Combinatorics, nCr, nPr \& Pascal's Triangle

Number of arrangements	Explanation	Example
n !	Number of distinct ways of arranging letters A, B, C are $A B C, A C B, B A C, B C A, C A B, C B A$ i.e. $6=3 \times 2 \times 1=3$! Number of distinct ways of arranging n letters A,B,C are n ! These are the number of permutations of a set of n distinct objects.	How many permutations are there of ABCDEFG? $7!=5040$
$\frac{n!}{r!}$	If out of n objects, r are repeated, we must divide the total number of permutations by r ! Why? Write out n ! permutations of n objects, with r marked, into a r ! $\times n!/ r!$ grid. Each row corresponds to a different permutation of the marked objects, and each column corresponds to a different permutation of the unmarked objects. If r marked objects are the same, each row is identical. Hence the total number of distinct permutations is $n!/ r!$	Permutations of VOODOO are $6!/ 4!=6 \times 5=\mathbf{3 0}$
$\frac{n!}{r!k!\ldots \ldots}$	Consider n objects with r repeats of one object, k repeats of another etc. Following the same 'gridding' ideas as above, we must successively divide the number of permutations by the factorial of the repeats	```are 11! / (4! x 4! x 2!) = 34,650 Permutations of RADAR are 5!/(2!2!) = 30 Permutations of BAZOOKA are 7!/(2!2!) = 1260```
$\frac{n!}{(n-r)!r!}$	Consider n objects comprising of r repetitions of one object and $n-r$ repetitions of another object. i.e. only two types of object. NOTE THIS IS ALSO ELEMENT (n,r) OF PASCAL'S TRIANGLE	How many ways can a tennis player win three matches out of ten fixtures? Assume no draws are allowed. (So 3 wins and 7 losses). $10!/(7!\times 3!)=120$

${ }^{n} P=\frac{n!}{n!} \quad$ Consider the number of permutations of a subset of r letters from an alphabet of n. The
number of ways of marking r letters for inclusion in the subset is $n!/(n-r)!r$!
The number of permutations of r letters is $r!$ so the total number of permutations is $\frac{n!}{(n-r)!r!} \times r!=\frac{n!}{(n-r)!}$

Ginger Twos has 16 flavours of ice cream. How many permutations of three distinct flavours can we have? $16!/(13!\times 3!)=16 \times 15 \times 14=3360$
${ }^{n} C_{r}=\frac{n!}{(n-r)!r!}$
The number of combinations of r objects from the list of n is when the order doesn't matter. i.e. A, B, C is the same combination as B, A, C as it contains the letters A, B and C. In this case we have r ! permutations for each set of r objects and therefore the total number of combinations is ${ }^{n} P_{r} / r!=n!/(n-r)!r$!

How many combinations of two distinct flavours are there to be tried at Ginger Twos? $16!/ /(14!\times 2!)=16 \times 15 / 2=120$

The number of combinations of four letter 'words' from an alphabet of 26 letters is $26!/(22!\times 4!)=26 \times 25 \times 24 \times 23 /(4 \times 3 \times 2)$ = 14,950

