Combinatorics, nCr, nPr & Pascal's Triangle

Number of arrangements	Explanation	Example		
n!	Number of distinct ways of arranging letters A,B,C are ABC, ACB, BAC, BCA, CAB, CBA i.e. $6 = 3 \times 2 \times 1 = 3!$	How many permutations are there of ABCDEFG? 7! = 5040		
	These are the number of <i>permutations</i> of a set of <i>n</i> distinct objects.			
n!	If out of <i>n</i> objects, <i>r</i> are repeated , we must divide the total number of permutations by <i>r</i> !	Permutations of VOODOO are 6!/4! = 6 x 5 = 30		
<u>r!</u>	Why? Write out $n!$ permutations of n objects, with r marked, into a $r! \ge n! / r!$ grid. Each row corresponds to a different permutation of the marked objects, and each column corresponds to a different permutation of the unmarked objects. If r marked objects are the same, each row is identical. Hence the total number of distinct permutations is $n!/r!$			
$\frac{n!}{r!k!}$	Consider <i>n</i> objects with <i>r</i> repeats of one object, <i>k</i> repeats of another etc. Following the same 'gridding' ideas as above, we must successively divide the number of permutations by the factorial of the repeats	Permutations of MISSISSIPPI (M x 1, I x 4, S x 4, P x 2, total 11 letters) are 11! / (4! x 4! x 2!) = 34,650 Permutations of RADAR are 5!/(2!2!) = 30 Permutations of BAZOOKA are 7!/(2!2!) = 1260		
$\frac{n!}{(n-r)!r!}$	Consider <i>n</i> objects comprising of <i>r</i> repetitions of one object and <i>n</i> - <i>r</i> repetitions of another object. i.e. only two types of object.	How many ways can a tennis player win three matches out of ten fixtures? Assume no draws are allowed. (So 3 wins and 7 losses).		
	NOTE THIS IS ALSO ELEMENT (<i>n,r</i>) OF PASCAL'S TRIANGLE	10	10!/(7! x 3!) = 120	
${}^{n}P_{r} = \frac{n!}{(n-r)!}$	C onsider the number of permutations of a <i>subset</i> of <i>r</i> letters from an alphabet of <i>n</i> . The number of ways of marking <i>r</i> letters for inclusion in the subset is $n!/(n-r)!r!$ The number of permutations of <i>r</i> letters is <i>r</i> ! so the total number of permutations is $\frac{n!}{(n-r)!r!}$		$r! = \frac{n!}{(n-r)!}$	Ginger Twos has 16 flavours of ice cream. How many <i>permutations</i> of three <i>distinct</i> flavours can we have? 16! / (13! x 3!) = 16 x 15 x 14 = 3360
${}^{n}C_{r} = \frac{n!}{(n-r)!r!}$	The number of <i>combinations</i> of <i>r</i> objects from the list of <i>n</i> is when the order doesn't matter. i.e. A,B,C is the same combination as B,A,C as it contains the letters A, B and C. In this case we have <i>r</i> ! permutations for each set of <i>r</i> objects and therefore the total number of combinations is ${}^{n}P_{r} / r! = n!/(n-r)!r!$		r. How many combinations of two distinct flavours are there to be tried at Ginger Twos? $16!//(14! \times 2!) = 16 \times 15 / 2 = 120$ The number of combinations of four letter 'words' from an alphabet of 26 letters is 26!/(22! x 4!) = 26 x 25 x 24 x 23 / (4 x 3 x 2) = 14,950	