Date

19.2 Transforming Quadratic Functions

Essential Question: How can you obtain the graph of $g(x) = a(x - h)^2 + k$ from the graph of $f(x) = x^2$?

Explore Understanding Quadratic Functions of the Form $g(x) = a(x - h)^2 + k$

Every quadratic function can be represented by an equation of the form $g(x) = a(x - h)^2 + k$. The values of the parameters *a*, *h*, and *k* determine how the graph of the function compares to the graph of the parent function, $y = x^2$. Use the method shown to graph $g(x) = 2(x - 3)^2 + 1$ by transforming the graph of $f(x) = x^2$.

Notice that point (2, 4) moves to point

C Translate the graph of $y = 2x^2$ right 3 units and up 1 unit to obtain the graph of $g(x) = 2(x - 3)^2 + 1$. Graph $g(x) = 2(x - 3)^2 + 1$.

Notice that point (2, 8) moves to point

D The vertex of the graph of $f(x) = x^2$ is _____ while the vertex of the graph of g(x) =

$$2(x-3)^2 + 1$$
 is _____.

Graph $f(x) = x^2$.

© Houghton Mifflin Harcourt Publishing Company

Reflect

- **1.** Discussion Compare the minimum values of $f(x) = x^2$ and $g(x) = 2(x-3)^2 + 1$. How is the minimum value related to the vertex?
- **2.** Discussion What is the axis of symmetry of the function $g(x) = 2(x 3)^2 + 1$? How is the axis of symmetry related to the vertex?

Explain 1 Understanding Vertical Translations

A vertical translation of a parabola is a shift of the parabola up or down, with no change in the shape of the parabola.

Vertical Translations of a Parabola

The graph of the function $f(x) = x^2 + k$ is the graph of $f(x) = x^2$ translated vertically.

If k > 0, the graph $f(x) = x^2$ is translated k units up.

If k < 0, the graph $f(x) = x^2$ is translated |k| units down.

Example 1 Graph each quadratic function. Give the minimum or maximum value and the axis of symmetry.

 $(A) \quad g(x) = x^2 + 2$

Make a table of values for the parent function $f(x) = x^2$ and for $g(x) = x^2 + 2$. Graph the functions together.

x	$f(x) = x^2$	$g(x) = x^2 + 2$
—3	9	11
-2	4	6
-1	1	3
0	0	2
1	1	3
2	4	6
3	9	11

The function $g(x) = x^2 + 2$ has a minimum value of 2.

The axis of symmetry of $g(x) = x^2 + 2$ is x = 0.

$finite{B} g(x) = x^2 - 5$

Make a table of values for the parent function $f(x) = x^2$ and for $g(x) = x^2 - 5$. Graph the functions together.

X	$f(x) = x^2$	$\boldsymbol{g}(\boldsymbol{x}) = \boldsymbol{x}^2 - \boldsymbol{5}$
-3		
-2		
-1		
0		
1		
2		
3		

The function $g(x) = x^2 - 5$ has a minimum value of _____.

The axis of symmetry of $g(x) = x^2 - 5$ is _____.

Reflect

- **3.** How do the values in the table for $g(x) = x^2 + 2$ compare with the values in the table for the parent function $f(x) = x^2$?
- 4. How do the values in the table for $g(x) = x^2 5$ compare with the values in the table for the parent function $f(x) = x^2$?

Your Turn

Graph each quadratic function. Give the minimum or maximum value and the axis of symmetry.

5.
$$g(x) = x^2$$

+ 4

			ţу		
		2 -	-	 	
_					X
4	-2	0		 2	 1
		-2			
		-4		 	
		-6			
		,	Ļ		

Explain 2 Understanding Horizontal Translations

A **horizontal translation** of a parabola is a shift of the parabola left or right, with no change in the shape of the parabola.

Horizontal Translations of a Parabola

The graph of the function $f(x) = (x - h)^2$ is the graph of $f(x) = x^2$ translated horizontally.

If h > 0, the graph $f(x) = x^2$ is translated h units right.

If h < 0, the graph $f(x) = x^2$ is translated |h| units left.

Example 2 Graph each quadratic function. Give the minimum or maximum value and the axis of symmetry.

(A)
$$g(x) = (x - 1)^2$$

Make a table of values for the parent function $f(x) = x^2$ and for $g(x) = (x - 1)^2$. Graph the functions together.

x	$f(x) = x^2$	$g(x) = (x-1)^2$
-3	9	16
-2	4	9
-1	1	4
0	0	1
1	1	0
2	4	1
3	9	4

The function $g(x) = (x - 1)^2$ has a minimum value of 0.

The axis of symmetry of $g(x) = (x - 1)^2$ is x = 1.

$\bigoplus g(x) = (x+1)^2$

Make a table of values and graph the functions together.

x	$f(x) = x^2$	$g(x) = (x+1)^2$
-3	9	
-2	4	
—1	1	
0	0	
1	1	
2	4	
3	9	

	10 ¹	/		
	8			
	6			
	4 -			
	2			
				X
-6 -4 -2	0	2	4	6
	-2			
	-4			

The function $g(x) = (x+1)^2$ has a minimum value of _____.

The axis of symmetry of $g(x) = (x + 1)^2$ is _____.

Reflect

- 7. How do the values in the table for $g(x) = (x 1)^2$ compare with the values in the table for the parent function $f(x) = x^2$?
- How do the values in the table for $g(x) = (x + 1)^2$ compare with the values in the table for the parent 8. function $f(x) = x^2$?

Your Turn

Graph each quadratic function. Give the minimum or maximum value and the axis of symmetry.

9.
$$g(x) = (x - 2)^2$$

10.
$$g(x) = (x+3)^2$$

S Explain 3 Graphing $g(x) = a(x-h)^2 + k$

The vertex form of a quadratic function is $g(x) = a(x - h)^2 + k$, where the point (h, k) is the vertex. The *axis of symmetry* of a quadratic function in this form is the vertical line x = h.

To graph a quadratic function in the form $g(x) = a(x - h)^2 + k$, first identify the vertex (h, k). Next, consider the sign of *a* to determine whether the graph opens upward or downward. If *a* is positive, the graph opens upward. If *a* is negative, the graph opens downward. Then generate two points on each side of the vertex. Using those points, sketch the graph of the function.

Example 3 Graph each quadratic function.

(A) $g(x) = -3(x+1)^2 - 2$

Identify the vertex.

The vertex is at (-1, -2).

Make a table for the function. Find two points on each side of the vertex.

x	—3	-2	—1	0	1
g (x)	—14	—5	-2	—5	—14

Plot the points and draw a parabola through them.

B
$$g(x) = 2(x-1)^2 - 7$$

Identify the vertex.

The vertex is at _____

Make a table for the function. Find two points on each side of the vertex.

x	-2	0	1	2	4
g (x)					

Plot the points and draw a parabola through them.

11. How do you tell from the equation whether the vertex is a maximum value or a minimum value?

Your Turn

Graph each quadratic function.

💬 Elaborate

14. How does the value of k in $g(x) = x^2 + k$ affect the translation of $f(x) = x^2$?

15. How does the value of *h* in $g(x) = (x - h)^2$ affect the translation of $f(x) = x^2$?

16. In $g(x) = a(x - h)^2 + k$, what are the coordinates of the vertex?

17. Essential Question Check-In How can you use the values of *a*, *h*, and *k*, to obtain the graph of $g(x) = a(x - h)^2 + k$ from the graph $f(x) = x^2$?

Online Homework

• Hints and Help

Extra Practice

Graph each quadratic function by transforming the graph of $f(x) = x^2$. Describe the transformations.

1.
$$g(x) = 2(x-2)^2 + 5$$

́У

16

14

12

10

8

6

4

2

0

2.
$$g(x) = 2(x+3)^2 - 6$$

3.	$g(x) = \frac{1}{2}(x-3)^2$	$^{2}-4$
----	-----------------------------	----------

4.
$$g(x) = 3(x-4)^2 - 2$$

© Houghton Mifflin Harcourt Publishing Company

Graph each quadratic function.

5.
$$g(x) = x^2 - 2$$

7.
$$g(x) = x^2 - 6$$

6. $g(x) = x^2 + 5$

8. $g(x) = x^2 + 3$

↑У

0 2 -

4

6

8

9. Graph $g(x) = x^2 - 9$. Give the minimum or maximum value and the axis of symmetry.

Χ

Graph each quadratic function. Give the minimum or maximum value and the axis of symmetry.

11.
$$g(x) = (x - 3)^2$$

12. $g(x) = (x+2)^2$

13. How is the graph of $g(x) = (x + 12)^2$ related to the graph of $f(x) = x^2$?

14. How is the graph of $g(x) = (x - 10)^2$ related to the graph of $f(x) = x^2$?

15. Compare the given graph to the graph of the parent function $f(x) = x^2$. Describe how the parent function must be translated to get the graph shown here.

16. For the function $g(x) = (x - 9)^2$ give the minimum or maximum value and the axis of symmetry.

Graph each quadratic function. Give the minimum or maximum value and the axis of symmetry.

17.
$$g(x) = (x-1)^2 - 5$$

18.
$$g(x) = -(x+2)^2 + 5$$

19.
$$g(x) = \frac{1}{4}(x+1)^2 - 7$$

20.
$$g(x) = -\frac{1}{3}(x+3)^2 + 8$$

21. Compare the given graph to the graph of the parent function $f(x) = x^2$. Describe how the parent function must be translated to get the graph shown here.

- **22.** Multiple Representations Select the equation for the function represented by the graph of a parabola that is a translation of $f(x) = x^2$. The graph has been translated 11 units to the left and 5 units down.
 - **a.** $g(x) = (x 11)^2 5$
 - **b.** $g(x) = (x + 11)^2 5$
 - c. $g(x) = (x + 11)^2 + 5$
 - **d.** $g(x) = (x 11)^2 + 5$
 - **e.** $g(x) = (x-5)^2 11$
 - **f.** $g(x) = (x 5)^2 + 11$
 - **g.** $g(x) = (x+5)^2 11$
 - **h.** $g(x) = (x+5)^2 + 11$

H.O.T. Focus on Higher Order Thinking

Critical Thinking Use a graphing calculator to compare the graphs of $y = (2x)^2$, $y = (3x)^2$, and $y = (4x)^2$ with the graph of the parent function $y = x^2$. Then compare the graphs of $y = (\frac{1}{2}x)^2$, $y = (\frac{1}{3}x)^2$, and $y = (\frac{1}{4}x)^2$ with the graph of the parent function $y = x^2$.

- **23.** Explain how the parameter *b* horizontally stretches or compresses the graph of $y = (bx)^2$ when b > 1.
- **24.** Explain how the parameter *b* horizontally stretches or compresses the graph of $y = (bx)^2$ when 0 < b < 1.
- **25. Explain the Error** Nina is trying to write an equation for the function represented by the graph of a parabola that is a translation of $f(x) = x^2$. The graph has been translated 4 units to the right and 2 units up. She writes the function as $g(x) = (x + 4)^2 + 2$. Explain the error.
- **26.** Multiple Representations A group of engineers drop an experimental tennis ball from a catwalk and let it fall to the ground. The tennis ball's height above the ground (in feet) is given by a function of the form $f(t) = a(t h)^2 + k$ where *t* is the time (in seconds) after the tennis ball was dropped. Use the graph to find the equation for f(t).

27. Make a Prediction For what values of *a* and *c* will the graph of $f(x) = ax^2 + c$ have one *x*-intercept?

Lesson Performance Task

The path a baseball takes after it has been hit is modeled by the graph. The baseball's height above the ground is given by a function of the form $f(t) = a(t - h)^2 + k$, where *t* is the time in seconds since the baseball was hit.

- **a.** What is the baseball's maximum height? At what time was the baseball at its maximum height?
- **b.** When does the baseball hit the ground?
- **c.** Find an equation for f(t).
- **d.** A player hits a second baseball. The second baseball's path is modeled by the function $g(t) = -16(t-4)^2 + 256$. Which baseball has a greater maximum height? Which baseball is in the air for the longest?

