Solving Linear Systems with Graphing

Definition: A Linear System is a set of two linear equations.
Example: $y=-2 x$ and $y=x+3$

1) Does the point $(0,4)$ make either equation true? Substitute it in and find out.
2) Does the point $(2,5)$ make either equation true? Explain.
3) Does the point ($-1,2$) make either equation true? Explain.

If a point works in $\underline{\text { both equations of a linear system, then that point must be the SOLUTION to the }}$ linear system. When you solve a linear system you find that one point makes both equations true.
4) What point is the solution to the system above? \qquad
Plot both equations in the same coordinate plane below. $y=-2 x$ and $y=x+3$

5) At what point do the two lines intersect? \qquad Compare this with your answer for \#4...

An ordered pair that makes a linear equation TRUE is called a \qquad .

The point that the two lines \qquad is the solution to the system!

To solve a system of linear equations, the ordered pair must work for \qquad equations!

Graphing Systems of Equations

Solve each system of equations by graphing.

$x-y=1$
\qquad Solution: \qquad Solution: \qquad
3. $y=-3 x+2$
$y=2 x-3$

6. $y=5$

$$
x=-3
$$

Solution: \qquad Solution: \qquad

