Connecting Sequences to Linear Functions

The following is the explicit formula of a sequence: $f(n)=3 n-1$
What does n represent?

What does $f(n)$ represent?

What does the 3 present?

Find the $1^{\text {st }} 5$ terms and graph the sequence $f(n)=3 n-1$

n	$\mathrm{f}(\mathrm{n})$
1	
2	
3	
4	
5	

What part of the equation represents the vertical movement from point to point on the graph?

A linear function can have the following form: $y=m x+b$. Here is an example: $y=3 x-1$
How are the explicit formula and linear equations similar? Here they are one more time: $\begin{array}{r}f(n)=3 n-1 \\ y=3 x-1\end{array}$

How are they different?

Now graph $y=3 x-1$ by completing the table below first.

x	y
0	
1	
2	
3	
4	

How are the two graphs the same?

How are they different?

What does the constant (-1 or minus 1) represent on the $2^{\text {nd }}$ graph?

