The y-Intercept and the Slope

Once you have an equation in slope-intercept form, start by graphing the y-intercept on the coordinate plane. From the y-intercept, move the rise and run of the slope to plot another point. Finally, draw the line that connects the two points. Let's use our previous equations to graph step-by-step.

Example 1

$$
y=2 x-1
$$

Step 1
The y-intercept is -1 , so we plot a point at -1 on the y-axis to begin.

Step 2

Next, the slope is 2 which means a rise of 2 and a run of 1 . So we'll move up two and right one to plot the next point.

Step 3

Finally, connect the dots with a line. This completes the graph of our linear function.

Here are the rest of the examples graphed.

Example 2

$y=-2 x+7$

Example 3

$y=\frac{3}{2} x-2$

Example 4

$y=2 x+4$

Lesson 6.1

Identify the slope as a fraction and the y-intercept of each equation. Then graph on the coordinate plane.

1. $y=2 x+1$

Slope:
y-int:

4. $y=7$

Slope:
y-int:

2. $y=3 x-4$

Slope:
y-int:

5. $y=-3 x-2$

Slope:
y-int:

3. $y=\frac{2}{3} x+5$

Slope:
y-int:

6. $y=-\frac{1}{3} x+5$

Slope:
y-int:

7. $y=\frac{2}{5} x-2$

Slope:
y-int:

10. $x=2$

Hint: This is not a function! Slope:
y-int:

8. $y=-\frac{3}{4} x-1$

Slope:
y-int:

11. $x=-6$

Hint: This is not a function! Slope:
y-int:

9. $y=-4$

Slope:
y-int:

12. $y=4 x-5$

Slope:
y-int:

