\qquad

4.1 Identifying and Graphing Sequences

Explore Understanding Sequences

A go-kart racing track charges $\$ 5$ for a go-kart license and $\$ 2$ for each lap. If you list the charges for 1 lap, 2 laps, 3 laps, and so on, in order, the list forms a sequence of numbers:

$$
7,9,11,13, \ldots
$$

A sequence is a list of numbers in a specific order. Each element in a sequence is called a term. In a sequence, each term has a position number. In the sequence $7,9,11,13, \ldots$, the second term is 9 , so its position number is 2 .

(A) The total cost (term) of riding a go-kart for different numbers of laps (position) is shown below. Complete the table.

Position number, \boldsymbol{n}	1	2	3		5	
Derm of the sequence, $\boldsymbol{f}(\boldsymbol{n})$	7	9		13		17
	Range					

(B) You can use the term and position number of a sequence to write a function. Using function notation, $f(2)=9$ indicates that the second term is 9 . Use the table to complete the following statements.

$$
f(1)=\square(3)=\square \quad f(6)=\square \quad f(\square)=13 \quad f(\square)=15
$$

(C) Identify the domain of the function $f(n)$.
(D) Identify the range of the function $f(n)$.

Reflect

1. Discussion What does $f(4)=13$ mean in the context of the go-kart problem?
2. Discussion Explain how to find the missing values in the table.
3. Communicate Mathematical Ideas Explain why the relationship between the position numbers and the corresponding terms of a sequence can be considered a function.

Explain 1 Generating Sequences Using an Explicit Rule

An explicit rule for a sequence defines the nth term as a function of n for any whole number n greater than 0 . Explicit rules can be used to find any specific term in a sequence without finding any of the previous terms.

Example 1 Write the first 4 terms of the sequence defined by the explicit rule.
(A) $f(n)=n^{2}+2$

Make a table and substitute values for $n=1,2,3,4$ to find the first 4 terms.

The first 4 terms of the sequence defined by the explicit rule $f(n)=\mathrm{n}^{2}+2$ are $3,6,11$, and 18 .

\boldsymbol{n}	$\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{n}^{2}+\mathbf{2}$	$\boldsymbol{f}(\boldsymbol{n})$
1	$f(1)=1^{2}+2=3$	3
2	$f(2)=2^{2}+2=6$	6
3	$f(3)=3^{2}+2=11$	11
4	$f(4)=4^{2}+2=18$	18

(B) $f(n)=3 n^{2}+1$

Make a table and substitute values for $n=$ \qquad
The first 4 terms are \qquad

n	$f(n)=3 n^{2}+1$	$f(n)$
1	$f(\square)=3(\square)^{2}+1=\square$	\square
2	$f(\square)=3(\square)^{2}+1=\square$	\square
3	$f(\square)=3(\square)^{2}+1=\square$	\square
4	$f(\square)+1=\square$	\square

Reflect

4. Communicate Mathematical Ideas Explain how to find the 20th term of the sequence defined by the explicit rule $f(n)=n^{2}+2$.
5. Justify Reasoning The number 125 is a term of the sequence defined by the explicit rule $f(n)=3 n+2$. Which term in the sequence is 125 ? Justify your answer.
6. Write the first 4 terms of the sequence defined by the explicit rule. $f(n)=n^{2}-5$
7. Find the $15^{\text {th }}$ term of the sequence defined by the explicit rule. $f(n)=4 n-3$.

Explain 2 Generating Sequences Using a Recursive Rule

A recursive rule for a sequence defines the nth term by relating it to one or more previous terms.
The following is an example of a recursive rule:
$f(1)=4, f(n)=f(n-1)+10$ for each whole number n greater than 1
This rule means that after the first term of the sequence, every term $f(n)$ is the sum of the pervious term $f(n-1)$ and 10 .

Example 2 Write the first 4 terms of the sequence defined by the recursive rule.

(A) $f(1)=2, f(n)=f(n-1)+3$ for each whole number n greater than 1

For the first 4 terms, the domain of the function is $1,2,3$, and 4 .
The first term of the sequence is 2 .

\boldsymbol{n}	$\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{f}(\boldsymbol{n}-\mathbf{1})+\mathbf{3}$	$\boldsymbol{f}(\boldsymbol{n})$
1	$f(1)=2$	2
2	$f(2)=f(1)+3=2+3=5$	5
3	$f(3)=f(2)+3=5+3=8$	8
4	$f(4)=f(3)+3=8+3=11$	11

The first 4 terms are 2,5,8, and 11 .
(B) $f(1)=4, f(n)=f(n-1)+5$ for each whole number n greater than 1

For the first 4 terms, the domain of the function is \qquad
The first term of the sequence is

\boldsymbol{n}	$f(n)=f(\boldsymbol{n}-\mathbf{1})+\mathbf{5}$	$\boldsymbol{f}(\boldsymbol{n})$
1	$f(1)=\square$	\square
2	$f(2)=f(\square)+5=\square+5=\square$	\square
3	$f(3)=f(\square)+5=\square+5=\square$	\square
4	$f(4)=f(\square)+5=\square+5=\square$	\square

The first 4 terms are

Reflect

8. Describe how to find the $12^{\text {th }}$ term of the sequence in Example 2A.
9. Suppose you want to find the $40^{\text {th }}$ term of a sequence. Would you rather use a recursive rule or an explicit rule? Explain your reasoning.

Your Turn

Write the first 5 terms of the sequence.
10. $f(1)=35$ and $f(n)=f(n-1)-2$ for each whole number n greater than 1 .
11. $f(1)=45$ and $f(n)=f(n-1)-4$ for each whole number n greater than 1 .

Explain 3 Constructing and Graphing Sequences

You can graph a sequence on a coordinate plane by plotting the points $(n, f(n))$ indicated in a table that you use to generate the terms.

Example 3 Construct and graph the sequence described.
(A) The go-kart racing charges are $\$ 5$ for a go-kart license and $\$ 2$ for each lap. Use the explicit rule $f(n)=2 n+5$.

Complete the table to represent the cost for the first 4 laps.

\boldsymbol{n}	$\boldsymbol{f}(\boldsymbol{n})=\mathbf{2 n + 5}$	$\boldsymbol{f}(\boldsymbol{n})$
1	$f(1)=2(1)+5=2+5=7$	7
2	$f(2)=2(2)+5=4+5=9$	9
3	$f(3)=2(3)+5=6+5=11$	11
4	$f(4)=2(4)+5=8+5=13$	13

The ordered pairs are $(1,7),(2,9),(3,11),(4,13)$.
Graph the sequence using the ordered pairs.
Notice that the graph is a set of points that are not connected.

(B) A movie rental club charges $\$ 20$ a month plus a $\$ 5$ membership fee. Use the explicit rule $f(n)=20 n+5$.

Complete the table to represent the charges paid for 6 months.

n	$f(n)=$		$n+$		$f(n)$
1	f	$)=$	$)+$	$=$	
2		$)=$	$)+$	$=$	
3		$)=$	$)+$]	
4		$)=$	$)+$	=	
5		$)=$	$)+$	=	
6		$)=$) +	$=$	

The ordered pairs are \qquad
Graph the sequence using the ordered pairs.
Notice that the graph is a set of points that are not connected.

Reflect

12. Explain why the points in the graphs in Example 3 are not connected.

Your Turn

Construct and graph the sequence described.

13. A pizza place is having a special. If you order a large pizza for a regular price $\$ 17$, you can order any number of additional pizzas for $\$ 8.50$ each. Use the recursive rule $f(1)=17$ and $f(n)=f(n-1)+8.5$ for each whole number n greater than 1 .

Number of pizzas
14. A gym charges $\$ 100$ as the membership fee and $\$ 20$ monthly fee. Use the explicit rule $f(n)=20 n+100$ to construct and graph the sequence.

Elaborate

15. What is the difference between an explicit rule and a recursive rule?
\qquad
\qquad
\qquad
16. Describe how to use an explicit rule to find the position number of a given term in a sequence.
\qquad
\qquad
\qquad
17. Explain why the graph of a sequence is a set of points that are not connected.
\qquad
\qquad
\qquad
18. Essential Question Check-In Why can the rule for a sequence be considered a function?
\qquad
\qquad
\qquad

사 Evaluate: Homework and Practice

Complete the table, and state the domain and range for the sequence it represents. Assume that the sequence continues without end.

- Online Homework
- Hints and Help
- Extra Practice

1.

\boldsymbol{n}	1	2	3		5	
$\boldsymbol{f}(\boldsymbol{n})$	15	30		60		90

2.

\boldsymbol{n}	1		3	4		6
$\boldsymbol{f}(\boldsymbol{n})$	6	8	10		14	

Write the first 4 terms of the sequence defined by the given rule.
3. $f(1)=65,536, f(n)=\sqrt{f(n-1)}$
4. $f(n)=n^{3}-1$
5. $f(1)=7, f(n)=-4 \cdot f(n-1)+15$
6. $f(n)=2 n^{2}+4$
7. $f(1)=3, f(n)=[f(n-1)]^{2}$
8. $f(n)=(2 n-1)^{2}$

Find the 10th term of the sequence defined by the given rule.
9. $f(1)=2, f(n)=f(n-1)+7$
10. $f(n)=\sqrt{n+2}$
11. $f(1)=30, f(n)=2 \cdot f(n-1)-50$
12. $f(n)=\frac{1}{2}(n-1)+3$

The explicit rule for a sequence and one of the specific terms is given. Find the position of the given term.
13. $f(n)=1.25 n+6.25 ; 25$
14. $f(n)=-3(n-1) ;-51$
15. $f(n)=(2 n-2)+2 ; 52$

The recursive rule for a sequence and one of the specific terms is given. Find the position of the given term.
16. $f(1)=8 \frac{1}{2} ; f(n)=f(n-1)-\frac{1}{2} ; 5 \frac{1}{2}$
17. $f(1)=99, f(n)=f(n-1)+4 ; 119$
18. $f(1)=33.3, f(n)=f(n-1)+0.2 ; 34.9$

Graph the sequence that represents the situation on a coordinate plane.
19. Jessica had $\$ 150$ in her savings account after her first week of work. She then started adding $\$ 35$ each week to her account for the next 5 weeks. The savings account balance can be represented by a sequence.

20. Carrie borrowed $\$ 840$ from a friend to pay for a car repair. Carrie promises to repay her friend in 8 equal monthly payments. The remaining amount Carrie has to repay can be represented by a sequence.

H.O.T. Focus on Higher Order Thinking

21. A park charges $\$ 12$ for one round of miniature golf and a reduced fee for each additional round played. If Tom paid $\$ 47$ for 6 rounds of miniature golf, what is the reduced fee for each additional round played?

22. Explain the Error To find the 5th term of a sequence where $f(1)=4$ and $f(n)=2 \cdot f(n-1)+1$ for each whole number greater than 1 , Shane calculates $(4 \cdot 2 \cdot 2 \cdot 2 \cdot 2)+1=65$. Is this correct? Justify your answer.
23. Critical Thinking Write a recursive rule for a sequence where every term is the same.

Lesson Performance Task

A museum charges $\$ 10$ per person for admission and $\$ 2$ for each of 8 special exhibits.
a. Use function notation to write an equation to represent the cost for attending n events.
b. Make a table to represent the total cost of admission plus 1,2 , and 3 special exhibits.
c. What would $f(0)=10$ represent?
d. What would the total cost be for going to all 8 special exhibits?
e. Determine an explicit rule for the total cost if the first special exhibit were free.

