\qquad Date \qquad
\qquad Part A: Working with Exponents and Radicals [R-RN.A.1]

1. Simplify each expression completely.
A) 100°
B) $64^{\frac{1}{2}}$
C) 3^{-3}
D) $27^{\frac{4}{3}}$
E) $4^{-\frac{1}{2}}$
F) $100^{-\frac{3}{2}}$
G) $4 p^{0} \cdot x^{2} \cdot 2 x^{-3}$
H) $\frac{a^{2} b^{3}}{2 a} \bullet \frac{40}{a^{8} b^{2}}$
2. Rewrite from radical form into exponential form, or vice versa.
A) $169^{\frac{1}{2}}$
B) $\sqrt[3]{10^{2}}$
C) $12^{\frac{3}{4}}$
D) $(\sqrt[3]{12})^{2}$
3. Simplify each of the expressions below completely. Justify by writing the property that you used and writing in expanded form.
Properties: Product Rule, Power Rule, Quotient Rule, Power of Product, Power of Quotient
A) $\left(5^{3}\right)^{-2}$
B) $\left(2 x^{4}\right)^{3}$
C) $\left(\frac{14 x^{3}}{2 y}\right)^{2}$
D) $\frac{36 b^{8}}{4 b^{2}}$
E) $144 m^{-2} m^{-5}$

Part B: Working with Polynomials [A-APR.A.1]
4. Simplify each expression completely.
A) $\left(3-2 h+8 h^{2}\right)+\left(-h+4 h^{2}+2 h\right)$
B) $\left(1-b-b^{2}\right)-\left(7 b+7 b^{2}-7\right)$
C) $(5 k+4)(k-7)$
D) $(k-1)^{2}$
5. Cathy plans to create a triangular planter bed. Two of the sides are the same length, but the other side is 4 feet longer than the first sides.
A) Sketch the planter beds.
B) Cathy measures the total length of the

Label the lengths using appropriate expressions. planter beds once they are arranged. She finds the total length to be 25 feet. Find the length of the longest side.

