\qquad Date \qquad Period \qquad

Expressions

| | Simplify. Justify by indicating the property used at each step. | | Evaluate. |
| :--- | :--- | :--- | :--- | :--- |
| 1. | Justification : | 2. | $-2\left(x^{2}+1\right)+6 \mathrm{x} \quad$ for $\mathrm{x}=5$ |
| $-3+2(\mathrm{x}-4)-5 \mathrm{x}$ | Distributive Prop | | $-2\left(5^{2}+1\right)+6(5)$ |
| $-3+2 x-8-5 x$ | Combine Like Terms | | -22 |

Equations

	Solve. Justify by indicating the property used at each step.					
3.	$\begin{aligned} & -9 x+18=23 \\ & -18-18 \\ & \frac{-9 x}{-9}=\frac{5}{-9} \\ & x=-\frac{5}{9} \end{aligned}$ Justificatio Subtractio Division P		of Eq. Eq.	4. $\frac{5}{4} y$ $\frac{5 y}{5}$		Justification : Addition Prop of Eq. Multiplication Prop of Eq. Division Prop of Eq.
	Answer the questions completely					
5.	$\begin{aligned} & -2\left(5-x^{2}\right)=22 \\ & -2\left(5-4^{2}\right)=22 \\ & -2(-11)=22 \\ & 22=22 \end{aligned}$ Is $\mathrm{x}=4$ a solution? How do you know? When you plug in 4, the left side equals the right side.			$\begin{aligned} & -\left(\frac{x}{5}-6\right)+1=-8 \\ & -\left(\frac{-15}{5}-6\right)+1=-8 \quad \text { Is } \mathrm{x}=-15 \text { a solution? } \\ & -(-9)+1=-8 \\ & 10 \neq-8 \quad \text { How do you know? } \\ & \text { When }-15 \text { is plugged in for } \mathrm{x} \text {, the left side does } \\ & \text { not equal to }-8 . \end{aligned}$		
	In each case, a mistake has been made. Find and explain what the mistake was.					
7.	$\begin{aligned} & 4+2(x-3)-5 x=8 \\ & 4+2 x-3-5 x=8 \end{aligned}$ The 2 was not distributed to the -3.	8.	$\begin{aligned} & 4+2(x-3)-5 x=8 \\ & 6(x-3)-5 x=8 \end{aligned}$ Addition before multiplication.		9.	$\begin{aligned} & 4+2(x-3)-5 x=8 \\ & 4+2 x-6-5 x=8 \\ & -5 x=8 \end{aligned}$ Like terms were not considered

Inequalities

	Solve.	Label the number line and indicate the solution(s):	Is -7 a solution? Explain how you know.
10.	$\begin{aligned} & -x-11>-3 \\ & x<-8 \end{aligned}$		No, since it is not in the shaded region of the number line.

Tracy Unified School District - Algebra 1 - Updated May 31, 2018 - Page 1

	Solve.		Solve and Graph the Solution
11.	$\begin{aligned} & -2\|x+3\|-5=-19 \\ & \|x+3\|=7 \\ & x+3=7 \\ & x=4 \quad \text { or } \quad x+3=-7 \\ & x=-10 \end{aligned}$	12.	$\begin{array}{lll} -2\|x+3\| \leq-10 & \\ \|x+3\| \geq 5 & \\ x+3 \geq 5 & \text { or } & x+3 \leq-5 \\ x \geq 2 & \text { or } & x \leq-8 \end{array}$

Application

	Answer the questions completely.
13.	Jennifer is creating a rectangular plot of grass in her backyard. She would like the length of the plot to be 3 feet less than the width. Draw a picture of the situation. Using the variable w for width, express the perimeter of the plot as an inequality if he would like the perimeter to be greater than 72 feet. 14. Dan has $\$ 400$ in his account and he wants to rent a tractor to work on his field. The upfront cost is $\$ 60$ and $\$ 40$ for each day of rental. Create an equation to describe how many days he can rent the tractor. Transform your equation for the number of rental days Dan into an equivalent equation. $d=\frac{400-60}{40}$ How many days can Dan rent a tractor for his $\$ 400 ?$ 9 days

Essential Question

	Write a Big Idea response for the Essential Question. Include vocabulary terms you have learned. Your responses will be evaluated using the Big Ideas Scoring Guide.
15.	How can we represent real world situations in multiple ways? By drawing pictures, setting up algebraic expressions, graphing, etc

Tracy Unified School District - Algebra 1 - Updated May 31, 2018 - Page 2

