## AP CALCULUS BC SUMMER ASSIGNMENT - DO NOT SHOW YOUR WORK ON THIS!

- Complete these problems during the last two weeks of August. SHOW ALL WORK. Know how to do ALL of these problems, so do them well.
- Items marked with a \* denote that a graphing calculator may be used.
- You will be tested on Calculus A material (derivatives; Ch. 1-4) within the first few weeks of school. You must do well to continue in the course.

1. If 
$$f(x) = \frac{x^2 - 9}{x + 3}$$
 is continuous at  $x = -3$ , then  
 $f(-3) =$   
a. 3 b. -3 c. 0  
d. 6 e. -6

2. If  $f(x) = e^{\sin x}$ , how many zeros does f'(x)have on the closed interval  $[0, 2\pi]$ ? a. 1 b. 2 c. 3 d. 4 e. 5

3. 
$$\lim_{x \to \infty} \frac{10^8 x^5 + 10^6 x^4 + 10^4 x^2}{10^9 x^6 + 10^7 x^5 + 10^5 x^3} =$$
  
a. 0 b. 1 c. -1  
d.  $\frac{1}{10}$  e.  $-\frac{1}{10}$ 

The graph of which function has y = −1 as an asymptote?

a.  $y = e^{-x}$ b.  $y = \frac{-x}{1-x}$ c.  $y = \ln(x+1)$ d.  $y = \frac{x}{x+1}$ e.  $y = \frac{x}{1-x}$ 5. If  $f(x) = \sqrt{4\sin x + 2}$ , then f'(0) =a. -2b. 0 c.  $\sqrt{2}$ d.  $\frac{\sqrt{2}}{2}$ e. 1

- 6. The equation of the tangent line to the curve  $x^2 + y^2 = 169$  at the point (5,-12) is a. 5y - 12x = -120b. 5x - 12y = 119c. 5x - 12y = 169d. 12x + 5y = 0
- e. 12x + 5y = 169

7. If f(x) = x - 1 and  $q(x) = x^2 + 1$  then f(q(x)) = q(f(x)) when x =с. —1 b. ½ a.  $-\frac{1}{2}$ d. 1 e. 0 8. If the graph of  $f(x) = 2x^2 + \frac{k}{x}$  has a point of inflection at x = -1, then the value of k is a. 1 b. –1 c. 2 d. –2 e. 0 9. The graph of  $y = \sqrt[3]{x^2 + 1}$  is symmetric with respect to which of the following? I The *x* – axis II The y - axisIII The origin a. I only b. II only c. III only d. II and III only e. I, II, and III 10.  $\frac{d}{dx}(e^{3\ln x}) =$ a.  $e^{3\ln x}$  b.  $\frac{e^{3\ln x}}{x}$  c.  $x^3$ d.  $3x^{2}$ 11. For what values of x is the graph of  $y = \frac{2}{4-x}$ concave downward? a. No values of x b. *x* < 4 c. *x* > -4 d. *x* < −4 e. x > 4 12. A particle moves along the x – axis in such a way that its position at time t is given by  $x(t) = \frac{1-t}{1+t}$ . What is the acceleration of the particle at time *t* = 0? a.  $-\frac{3}{5}$ b. –4 c. 4 d. 2 e. –2

13. If  $y = x^{(x^3)}$  for x > 0, then  $\frac{dy}{dx} =$ a.  $x^3 \cdot x^{(x^3-1)}$  b.  $4x^3$ c.  $x^2 + 3x^2 \ln x$  d.  $x^{(x^3+2)}(1+3\ln x)$ e.  $3x^{(x^3+2)} \ln x$ 14. If, for all values of x, f'(x) < 0 and f''(x) > 0which one of the following curves could be a part of the graph of f? b. a. c. d. e. 15. The maximum value of  $f(x) = 2x^3 - 9x^2 + 12x - 1$  on [-1, 2] is a. 0 b. 1 c. 2 d. 3 e. 4 16. \*The  $\lim_{x \to -3} \frac{x}{\sqrt{x^2}}$ a. –3 b. –1 c. 1 d. 3 e. nonexistent

17. \*Let f and g be differentiable functions such  
that 
$$f(1)=4$$
,  $g(1)=3$ ,  $f'(3)=-5$   
 $f'(1)=-4$ ,  $g'(1)=-3$ ,  $g'(3)=2$ .  
If  $h(x)=f(g(x))$ , then  $h'(1)=$   
a. -9 b. 15 c. 0  
d. -5 e. -12

| 18. *The shortest distance from the curve xy = 4 to the origin is                                                                                                                              |                               |                                 |                                              |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|----------------------------------------------|--|--|
| a. 2                                                                                                                                                                                           | b. 4                          |                                 | c. √2                                        |  |  |
| d. 2√2                                                                                                                                                                                         | e. ½√2                        |                                 | ··· • • -                                    |  |  |
|                                                                                                                                                                                                | -                             |                                 |                                              |  |  |
| 19. *If $f(x) = 3x^2$                                                                                                                                                                          | -8 <i>x</i> <sup>-2</sup> , t | hen $\lim_{h\to 0} \frac{j}{2}$ | $\frac{f(2+h)-f(2)}{h} =$                    |  |  |
| a. 10                                                                                                                                                                                          | b. 14                         |                                 | c. 20                                        |  |  |
| d. –14                                                                                                                                                                                         | e. –20                        |                                 |                                              |  |  |
| <ul> <li>20. *How many real solutions does the equation sin(6x)=2e<sup>x</sup> have?</li> <li>a. None</li> <li>b. One</li> <li>c. Six</li> <li>d. Eight</li> <li>e. Infinitely many</li> </ul> |                               |                                 |                                              |  |  |
| of the Mean V<br>a. None                                                                                                                                                                       | $ -2 \le x \le$               | 3 satisf                        | v many numbers<br>y the conclusion<br>c. Two |  |  |
| 22. *If $f'(x) = e^{x}$                                                                                                                                                                        | +sin <i>x</i> th              | en ƒ (x) n                      | nay be                                       |  |  |
| a. $\frac{e^{x+1}}{x+1} + \cos x$                                                                                                                                                              |                               | b. $e^{x} + e^{x}$              | cos x                                        |  |  |
| c. $e^{x} - \cos x - 1$<br>e. $e^{2x} - \cos x$                                                                                                                                                |                               | d. <i>xe</i> <sup>-x</sup>      | $+\cos x$                                    |  |  |
| 23. If $f(x) = (2+3x)^4$ , then the 4 <sup>th</sup> derivative of f is                                                                                                                         |                               |                                 |                                              |  |  |
| a. 0                                                                                                                                                                                           | b. 4! (3)                     | 1                               | c. 4!(3 <sup>4</sup> )                       |  |  |
| d. 4!(3 <sup>5</sup> )                                                                                                                                                                         | e. 4!(2+                      | 3 <i>x</i> )                    |                                              |  |  |
| 24. At what value(s) of x does $f(x) = x^4 - 8x^2$ have<br>a relative minimum?a. 0 and -2 onlyb. 0 and 2 onlyc. 0 onlyd2 and 2 onlye2, 0, and 2                                                |                               |                                 |                                              |  |  |

| 25. The $\lim_{h \to 0} \frac{ x+h }{h}$<br>a. 0<br>d1                                                                                      | $\frac{ - x }{2} \text{ at } x = 3 \text{ is}$<br>b. 1<br>e. nonexistent                                                          | c. 3                     |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                                                                                                                                             | unction given by $\frac{1}{2}$ of <i>c</i> that satisfy the theorem on the theorem on the b. 1 only e. $-\sqrt{3}$ and $\sqrt{3}$ | he conclusion of         |
| 27. If $x + y = xy$ , t<br>a. $\frac{1}{x-1}$<br>d. $x + y - 1$                                                                             | b. $\frac{y-1}{x-1}$                                                                                                              | c. $\frac{1-y}{x-1}$     |
| 28. If $g(x) = \ln(\ln 2)$<br>a. $\frac{x}{\ln 2x}$<br>d. $\frac{2}{\ln 2x}$                                                                | 2x), then $g'(x) =$<br>b. $\frac{1}{x(\ln 2x)}$<br>e. $\frac{1}{\ln(\ln 2x)}$                                                     | c. $\frac{1}{\ln 2x}$    |
| 29. If $f(x) = \frac{x}{x+1}$<br>a. All real<br>numbers<br>d. $y \le 1$                                                                     |                                                                                                                                   | ne range of fis<br>c.y≠1 |
| 30. In which inter<br>$f(x) = x^3 + 6x^2$<br>a. (- $\infty$ ,-3) only<br>c. (-1, $\infty$ ) only<br>e. (- $\infty$ ,-3) $\cup$ (1, $\infty$ | ² +9x+1 increasi<br>b. (−3, −<br>d. (−∞,−                                                                                         | ng?                      |

f is

31. Which of the following graphs represents an even function? a. b. d. c. e. 32. For |x| < 1, the derivative of  $y = \ln \sqrt{1 - x^2}$  is a.  $\frac{x}{1-x^2}$  b.  $\frac{x}{x^2-1}$  c.  $\frac{-x}{x^2-1}$ d.  $\frac{1}{2(1-x^2)}$  e.  $\frac{1}{\sqrt{1-x^2}}$ 33. If  $f(x) = 2e^{2x}$ , then  $f'(\ln 3) =$ a. 9 b. 18 c. 24 d. 32 e. 36 34. Consider the function  $f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ x & \vdots \end{cases}$ . In |k, x=0order for f(x) to be continuous at x = 0 the value of k must be b. 1 a. 0 с. **—**1 d.  $\pi$ e. A number greater than 1 35. What are all values of *x* for which the graph of  $y = x^3 - 6x^2$  is concave downward? a. 0 < *x* < 4 b. *x* > 2 c. *x* < 2 e. *x* > 4 d. *x* < 0

36. If  $\frac{dy}{dx} = e^{3x}$ , then y could be a. 3 $e^{3x}$ b. *e*<sup>x<sup>3</sup></sup> C.  $\frac{1}{2}e^{x^3}$ d.  $3e^{x^3}$  e.  $\frac{1}{3}e^{3x}$ 37. If the fundamental period of the function  $f(x) = 3\cos\left(\frac{kx}{2}\right)$  is  $\frac{2\pi}{3}$ , then k may be a. 2 c. 4 b. 3 d. 6 e. 8 38. If  $y = xe^x$ , then  $\frac{d^n y}{dx^n} =$ b. *e*<sup>*nx*</sup> a. *e*<sup>×</sup> d. *x<sup>n</sup>e<sup>x</sup>* c.  $(x+n)e^{x}$ e.  $(x+n^2)e^x$ 39. A particle moves on the x – axis in such a way that its position at time t is given by  $x(t) = 3t^5 - 25t^3 + 60t$ . For what values of t is the particle moving to the left? a. -2 < t < 1 only b. -2 < *t* < -1 and 1 < *t* < 2 c. −1 < *t* < −1 and *t* > 2 d. 1 < t < 2 only e. *t* < -2, -1 < *t* < 1, and *t* > 2 40. The equation of the normal line to the curve  $y = \sqrt[3]{x^2 - 1}$  at the point where x = 3 is b. y - 4x = 10a. v + 12x = 38d. v + 2x = 8c. y + 2x = 4e. y - 2x = -441. \* *f* is a function such that  $\lim_{x\to a} \frac{f(x) - f(a)}{x - a} = 0$ .

- Which of the following must be true? a.  $\lim_{x \to a} f(x)$  does not exist
- b. *f*(*a*) does not exist
- c. f'(a) = 0
- d. f(a) = 0
- e. f(x) is continuous at x = 0

42. \*If 
$$f(x) = \sqrt{(x^2 + 2)^3}$$
, then  $f'(x) =$   
a.  $\frac{3\sqrt{x^2 + 2}}{2}$  b.  $3x\sqrt{x^2 + 2}$   
c.  $\sqrt{6x(x^2 + 2)^2}$  d.  $\frac{3x}{\sqrt{x^2 + 2}}$   
e.  $\frac{4x}{3\sqrt[3]{x^2 + 2}}$ 

- 43. \*Of the choices given, which value is NOT in the domain of the function  $f(x) = (\cos x)^x$ ?
  - a. 1 b.  $\frac{\pi}{2}$  c.  $\frac{4\pi}{3}$ d. 4 e.  $2\pi$
- 44. \*If f is a function which is everywhere increasing and concave upwards, which statement is true about f<sup>-1</sup>, the inverse of f?
  a. f<sup>-1</sup> is not a function.
- b.  $f^{-1}$  is increasing and concave upwards
- c.  $f^{-1}$  is increasing and concave downwards
- d.  $f^{-1}$  is decreasing and concave upwards
- e.  $f^{-1}$  is decreasing and concave downwards
- 45. \*A function whose derivative is a constant multiple of itself must be a. Periodic b. Linear
- c. Exponential d. Quadratic
- e. Logarithmic

d. –sinx

46. \*For how many real numbers *x* is it true that

 $sin x = \frac{x}{10}$ ? a. Three b. Five c. Six d. Seven e. Infinitely many 47. \*What is the 50<sup>th</sup> derivative of cosx? a. -cosx b. cosx c. sinx

e. 0

48. \*Suppose that f is a continuous function defined for all real numbers x and f(-5) = 3 and f(-1) = -2. If f(x) = 0 for one and only one value of x then which of the following could be x?

49. The graph shows the distance s(t) from a reference point of a particle moving on a number line, as a function of time. Which of the points marked is the closest to the point where the acceleration first becomes negative?



| 53. If the radius of a sphere is increasing at the rate of 2 inches per second, is the volume increasing when the radius is 10 inches?<br>a. 8000 b. 800 c. $3200\pi$<br>d. $40\pi$ c. $80\pi$<br>54. What are all values of x for which $\ln(x^2 - 1) > 0?$<br>a. $ x  > \sqrt{2}$ b. $ x  > 1$ c. $ x  \ge \sqrt{2}$<br>55. The $\lim_{x \to 0} \frac{(3 - x)^2}{(3 - x)^2}$ is<br>a. 0 b. $-2$ c. 1<br>d. $-1$ e. nonexistent<br>56. If $f(x) = \sqrt{x}$ is<br>a. $\frac{\sqrt{2}}{4}$ b. $\sqrt{2}$ c. $\frac{\sqrt{2}}{2}$<br>61. The coordinates of the point on the curve<br>$y = x^2 + 1$ which is closest to $(3,1)$ is<br>a. $(1,2)$ b. $(2,5)$ c. $(3,10)$<br>d. $(\frac{1}{2},\frac{x^2}{1})$ c. $(\frac{x^2}{x^2} + 1)$<br>57. If $f(x) = \arctan\left(\frac{1}{x}\right)^2$ , then $f'(x) = \frac{1}{x^2 + 1}$<br>a. $\frac{1}{x^2 + 1}$ e. $-\frac{4}{x^2 + 1}$<br>58. If $f(x) = \cos(x)$ , what is the range of $f?$<br>a. $(1,2)$ b. $(2,5)$ c. $(3,10)$<br>d. $(\frac{1}{2},\frac{x^2}{1})$ e. $(\frac{1}{2},\frac{x^2}{2})$ e. $(\frac{1}{2},\frac{x^2}{2})$<br>57. If $f(x) = \arctan\left(\frac{1}{x}\right)^2$ , then $f'(x) = \frac{1}{x^2 + 1}$<br>a. $\frac{1}{x^2 + 1}$ e. $-\frac{4}{x^2 + 1}$<br>57. If $f(x) = \arctan\left(\frac{1}{x}\right)^2$ , then $f'(x) = \frac{1}{x^2 + 1}$<br>58. If $f(x) = \cos(x)$ , what is the range of $f?$<br>a. $(1,2)$ b. $(2,5)$ c. $(3,10)$<br>d. $(\frac{1}{x^2 + 1})$ e. $(\frac{1}{x^2 + 1})$ e. $(\frac{1}{x^2 + 1})$<br>58. If $f(x) = \cos(x)$ , what is the range of $f?$<br>a. $(1,2)$ c. $(1/(1,-3)^3)$ . For what values of t is the value of t is the value of t is the value of $f(x)^3$ is $x = 20.62x$ , then at the point $x = 3$ , the example $x = 0$ .<br>58. If $f(x) = \cos(x)$ , what is the range of $f?$<br>a. $(1,2)$ c. $(1/(1,-3)^3)$ . For what values of t is the value of $f(x)^3$ is $x = 20$ . Six $(1,2)^3$ is $x = 20.62x$ , $(1,2)^3$ is $x = 20.62x$ , $(1,2)^3$ is $(1,2)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                         |                                                                |                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|
| per second, is the volume increasing when the radius is 10 inches?<br>a. 800 $x$ b. 800 c. 3200 $\pi$<br>d. $40\pi$ e. $80\pi$<br>54. What are all values of x for which $\ln(x^2-1) > 07$<br>a. $ x  > \sqrt{2}$ b. $ x  > 1$ c. $ x  \ge \sqrt{2}$<br>d. $ x  > \sqrt{2}$ b. $ x  > 1$ c. $ x  \ge \sqrt{2}$<br>d. $ x  > \sqrt{2}$ b. $ x  > 1$ c. $ x  \ge \sqrt{2}$<br>d. $ x  > \sqrt{2}$ b. $ x  > 1$ c. $ x  \ge \sqrt{2}$<br>d. $ x  > \sqrt{2}$ b. $ x  > 1$ c. $ x  \ge \sqrt{2}$<br>d. $ x  > \sqrt{2}$ c. $ x  \ge 1$ e. $ x  < \sqrt{2}$<br>a. $0$ b. $-2$ c. 1<br>d. $-1$ e. nonexistent<br>55. If $f(x) = \ln x$ and $g(x) = e^x$ , then $f(g(4)) = a$<br>a. $\frac{1}{x^2 + x}$ b. $\frac{x^2}{x^2 - 1}$ c. $\frac{x^2}{x^2 + 1}$<br>d. $(2 + \frac{1}{x^2})^2 = \frac{1}{x^2 + 1}$<br>57. If $f(x) = \arctan(\frac{1}{x})$ , then $f'(x) = \frac{1}{x^2 + 1}$<br>d. $\frac{1}{x^2 + 1}$ e. $\frac{-1}{x^2 + 1}$<br>57. If $f(x) = \arctan(\frac{1}{x})$ , then $f'(x) = \frac{1}{x^2 + 1}$<br>58. If $f(x) = \cosh(x)$ , what is the range of f?<br>a. $\frac{1}{x^2 + 1}$ b. $\frac{\sqrt{x^2}}{x^2 - 1}$ c. $\frac{x^2}{x^2 + 1}$<br>53. $ x  = 1 \le x \le 1$<br>54. The deviation of the tangent time to the curve $\frac{y = x^2 + 1 \text{ which is closest to (3,1) is}}{16 (3 - \frac{1}{x^2 + 1})^2 = \frac{1}{x^2 + 1} (2x)^2}$<br>54. The deviative of $\frac{1}{4(x)^2}(2x)^5$ is $\frac{3}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                         |                                                                | 65. *If $\lim_{x \to 0} \frac{g(3) - g(x)}{2} = -0.628$ , then at the point x = |
| $\begin{array}{lll} radius is 10 inches?\\ a. 800 \\ a. 800 \\ c. 3200 \\ b. 800 \\ c. 3200 \\ c. 1t is always concave upward.\\ d. 40\pi \\ e. 80\pi \\ c. tt is always concave upward.\\ d. tt is decreasing or lark greater than 0.\\ e. it has a relative maximum at x = 0.c. it is always concave upward.\\ d. tt is decreasing for alk greater than 0.\\ e. it has a point of inflection at x = 0.c. it is always concave upward.d. tt is decreasing for alk greater than 0.\\ e. it has a point of inflection at x = 0.c. it is always concave upward.d. tt is decreasing for alk greater than 0.\\ e. it has a point of inflection at x = 0.c. it is durays concave upward.d. tt is decreasing for alk greater than 0.e. it has a point of inflection at x = 0.c. it is durays concave upward.d. tt is durays co$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                       |                                                                | 5 A                                                                             |
| d. $40\pi$ e. $80\pi$<br>54. What are all values of x for which $\ln(x^2 - 1) > 0?$<br>a. $ x  > \sqrt{2}$ b. $ x  > 1$ c. $ x  \ge \sqrt{2}$<br>d. $ x  \ge 1$ e. $ x  < \sqrt{2}$<br>a. $(x +  x  < x^2)$<br>55. The $\lim_{x \to 1} \frac{(3 - x)^2}{(x - 3)}$ is<br>a. 0 b. $-2$ c. 1<br>d. $-1$ e. nonexistent<br>56. If $f(x) = \ln x$ and $g(x) = e^x$ , then $f(g(4)) =$<br>a. $\ln 4$ b. $e^4$ c. 4<br>d. $e^4$ e. $-4$<br>57. If $f(x) = \arctan(\frac{1}{x})$ , then $f'(x) =$<br>a. $\frac{-1}{x^2 + x}$ b. $\frac{x}{\sqrt{x^2} - 1}$ c. $\frac{x^2}{x^2 + 1}$<br>a. $\frac{1}{x^2 + 1}$ e. $\frac{-1}{x^2 + 1}$ c. $\frac{x^2}{x^2 + 1}$<br>57. If $f(x) = \arctan(\frac{1}{x})$ , then $f'(x) =$<br>58. If $f(x) = \cos(x - x)$ , this the range of $f?$<br>a. $(x + -1 \le x \le 1)$<br>58. If $f(x) = \cos(x - x)$ , then $f(x) =$<br>58. If $f(x) = \cos(x - x)$ , then $f(x) =$<br>57. If $f(x) = -4x < 50$<br>b. $(x + -1 \le x \le 1)$<br>58. If $f(x) = \cos(x - x)$ , then $f(x) =$<br>58. If $f(x) = \cos(x - x)$ , then $f(x) =$<br>57. If $f(x) = -3 - x + 12$ , then $f'(x) =$<br>58. If $f(x) = \cos(x - x)$ , then $f'(x) =$<br>58. If $f(x) = \cos(x - x)$ , then $f'(x) =$<br>58. If $f(x) = \cos(x - x)$ , then $f(x) =$<br>58. If $f(x) = \cos(x - x)$ , then $f(x) =$<br>57. If $f(x) = \cos(x - x)$ , then $f'(x) =$<br>58. If $f(x) = \cos(x - x)$ , then $f'(x) =$<br>57. If $f(x) = -3 - x + 12$ , then $f'(x) =$<br>58. If $f(x) = \cos(x - x)$ , then $f(x) =$<br>59. If $f(x) = \cos(x - x)$ , then $f(x) =$<br>51. $(x + 1)(x - 3)^{(x)}$ , for what values of t is the value of t is three a - x + 30, the the value of t is three a - x + 300 $(x - x) = 12x + 40$ $(x - x) = 12x - 8$ $(x - 1) = 2x + 40$ $(x - x) = 12x - 8$ $(x - 2) = 12x + 40$ $(x - 2) = 12x - 8$ $(x - 2) = 12x + 12$ $(x - 3)$ $(x - 3) = 0, -1$ $(x - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                         |                                                                |                                                                                 |
| If this a point of inflection at $x = 0$ .54. What are all values of $x$ for which $\ln(x^2 - 1) > 0$ ?a. $ x  > \sqrt{2}$ b. $ x  > 1$ c. $ x  > \sqrt{2}$ c. $ x  > \sqrt{2}$ a. $ x  > \sqrt{2}$ b. $ x  < 1$ c. $ x  > \sqrt{2}$ 55. The $\lim_{x \to 1} \frac{(3 - x)^2}{(x - 3)}$ isc. $1$ e. $-\frac{\sqrt{2}}{2}$ c. $\ln(sec^2 x)$ d. $2\ln(secx)$ a. $0$ b. $-2$ c. 1e. $-\frac{\sqrt{2}}{2}$ d. 1e. $-\frac{\sqrt{2}}{2}$ d. $-1$ e. nonexistentc. 1e. $-\frac{\sqrt{2}}{2}$ c. $\ln(sec^2 x)$ d. $2\ln(secx)$ 55. If $f(x) = \ln x$ and $g(x) = e^x$ , then $f(g(4)) =$<br>a. $\ln 4$ b. $e^x$ c. 4c. $(\frac{1}{3}, \frac{1}{32})$ e. $(\frac{1}{3}, \frac{1}{32})$ c. $(3, 10)$ 61. The coordinates of the point on the curve<br>$y = x^2 + 1$ which is closest to $(3, 1)$ is<br>a. $(1, 2)$ b. $(2, 5)$ c. $(3, 10)$ a. $e^{-4}$ e. $-4$ f. $(2, \lim_{x \to 1} (1 + \frac{1}{x})^{3^2} =$ a. $3e$ b. 1c. $-1$ 3. $e^-4$ f. $(2, \lim_{x \to 1} (1 + \frac{1}{x})^{3^2} =$ a. $3e^+$ b. $124x^{3^2}$ c. $30(4x)^2(2x)^5$ 57. If $f(x) = \arctan(\frac{1}{x})$ , then $f'(x) =$ f. $3e^x$ e. $e^x$ f. $3e^x$ f. $8e^x$ 63. A particle moves along the $x - axis$ so that at<br>any time t its position is given by<br>$x(t) = (t+1)(t-3)^3$ f. $3e^x + 1e^x + 1e^x$ f. $3e^x + 1e^x $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         | c. It is always concave upward.                                | -                                                                               |
| 54. What are all values of x for which $\ln(x^2 - 1) > 0$ ?<br>a. $ x  > \sqrt{2}$ b. $ x  > 1$ c. $ x  > \sqrt{2}$<br>b. $ x  > \frac{1}{2}$ e. $ x  < \sqrt{2}$<br>c. $ x  > \sqrt{2}$<br>c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d. 40 $\pi$ e. 80 $\pi$                                                                                                 | • •                                                            | -                                                                               |
| a. $ x  > \sqrt{2}$ b. $ x  > 1$ c. $ x  > \sqrt{2}$<br>d. $ x  \ge 1$ e. $ x  < \sqrt{2}$<br>55. The $\lim_{x \to 1} \frac{(3-x)^2}{(x-3)}$ is<br>a. 0 b. $-2$ c. 1<br>d. 1 e. $\frac{\sqrt{2}}{2}$<br>61. The coordinates of the point on the curve<br>$y = x^2 + 1$ which is closest to (3,1) is<br>a. (1,2) b. (2,5) c. (3,10)<br>d. $(\frac{2}{3}, \frac{x^2}{3})$ e. $(\frac{1}{2}, \frac{x^2}{3})$<br>63. A particle moves along the $x - axis$ so that at<br>a. $\frac{-1}{x^2 + x}$ b. $\frac{x}{\sqrt{x^2 - 1}}$ c. $\frac{x^2}{x^2 + 1}$<br>63. A particle moves along the $x - axis$ so that at<br>any time <i>t</i> its position is given by<br>$x(t) = (t+1)(t-3)^2$ . For what values of <i>t</i> is the<br>$x + 2x + 3$ b. $\frac{x}{\sqrt{x^2 - 1}}$ c. $\frac{x^2}{x^2 + 1}$<br>64. The equations of the tangent line to the curve<br>$y = x^2 - 6x^2$ at its point of inflection is<br>a, y = -12x + 40<br>64. The equations of the tangent line to the curve<br>$y = \frac{k^2 + 3}{2}$ and antiderivative of 2tanx is<br>a. ln(sec 2x) b. 2sec^2 x<br>c. ln(sec^2 x) d. 2ln(cosx)<br>e. ln(2secx)<br>65. *For $0 \le x \le \frac{\pi}{2}$ , an antiderivative of 2tanx is<br>a. ln(sec 2x) b. 2sec^2 x<br>c. ln(sec^2 x) d. 2ln(cosx)<br>e. ln(2secx)<br>66. *For $0 \le x \le \frac{\pi}{2}$ , an antiderivative of 2tanx is<br>a. ln(sec 2x) b. 2sec^2 x<br>c. ln(sec^2 x) d. 2ln(cosx)<br>e. ln(2secx)<br>67. * If the derivative of a function <i>f</i> is given by<br>$f'(x) = \sin(x^2)$ , then how many critical points<br>does the function <i>f</i> ( <i>x</i> ) have on the interval [0.2,<br>2.6] <sup>7</sup><br>a. 0 b. 1 c. 2 d. 3 e. 4<br>68. *The derivative of 4 [x] <sup>3</sup> (2x) <sup>5</sup> is<br>a. 72x <sup>8</sup> b. 124x <sup>17</sup><br>c. $30x(4x)^2(2x)^5$ d. $72x(4x)^2(2x)^5$<br>e. $144(4x)^4(2x)^2$<br>69. *The second derivative of a function is given by<br>$f'(x) = 0.5 + cos x - e^{-x}$ . How many points of<br>inflection does the function <i>f</i> ( <i>x</i> ) have on the<br>interval $0 \le x \le 20^2$<br>a. None b. Three c. Six<br>d. Seven e. Ten<br>70. *The equation of the line tangent to the curve<br>$y = \frac{k + 8}{k + x}$ at $x = -2$ is $y = x + 4$ . What is the<br>x = y = 12x - 80 d. $y = -12x + 4070. *The equation of the line tangent to the curvey = \frac{k + 8}{k + x} at x = -2 is y = x + 4. What is thex = -3$ b. $-1$ c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \mathbf{\Gamma} \mathbf{A} = \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A}$ |                                                                |                                                                                 |
| d. $ x  \ge 1$ e. $ x  < \sqrt{2}$<br>a. $\frac{\sqrt{2}}{4}$ b. $\sqrt{2}$ c. $\frac{\sqrt{2}}{2}$<br>a. $\frac{\sqrt{2}}{4}$ b. $\sqrt{2}$ c. $\frac{\sqrt{2}}{2}$<br>a. $\frac{\sqrt{2}}{4}$ b. $\sqrt{2}$ c. $\frac{\sqrt{2}}{2}$<br>a. $\frac{\sqrt{2}}{4}$ b. $\sqrt{2}$ c. $\frac{\sqrt{2}}{2}$<br>b. $2 \sec^2 x$ an artiderivative of $2 \tan x$ is a ln(sec2x) b. $2 \sec^2 x$ .<br>c. $\ln(\sec^2 x)$ d. $2 \sec^2 x$ .<br>c. $\ln(2 \sec x)$<br>c. $\ln(2 \sec x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                         |                                                                | e. attains a relative minimum point                                             |
| $\begin{array}{c} \text{d.}  x  \leq 1 \\ \text{e.}  x  < \sqrt{2} \\ \text{b}  \sqrt{2} \\ \text{c}  \frac{\sqrt{2}}{4} \\ \text{b}  \sqrt{2} \\ \text{c}  \frac{\sqrt{2}}{2} \\ \text{c} \\ \frac{\sqrt{2}}{4} \\ \text{b}  \sqrt{2} \\ \text{c} \\ \frac{\sqrt{2}}{4} \\ \frac{\sqrt{2}}{4} \\ \text{c} \\ \frac{\sqrt{2}}{4} \\ $ |                                                                                                                         |                                                                | 66. *For $0 \le x \le \frac{\pi}{2}$ , an antiderivative of 2tanx is            |
| 55. The $\lim_{x \to 3} \frac{(3-x)^2}{(x-3)}$ is<br>a. 0 b. $-2$ c. 1<br>d. 1 e. $-\frac{\sqrt{2}}{2}$<br>d. 1 e. $-\frac{\sqrt{2}}{2}$<br>e. $\ln(2\sec x)$<br>e. $\ln(2ex)$<br>e. $\ln(2ex)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d. $ x  \ge 1$ e. $ x  < \sqrt{2}$                                                                                      | $a \sqrt{2}$ $b \sqrt{2}$ $c \sqrt{2}$                         |                                                                                 |
| 55. The $\lim_{x \to 3} \frac{(3-x)^2}{(x-3)}$ is<br>a. 0 b2 c. 1<br>d. 1 e. $-\frac{\sqrt{2}}{2}$<br>b. $(-1 - e, -nonexistent)$<br>56. If $f(x) = \ln x$ and $g(x) = e^x$ , then $f(g(4)) =$<br>a. $\ln 4$ b. $e^4$ c. 4<br>d. $e^{-4}$ e. $-4$<br>57. If $f(x) = \arctan\left(\frac{1}{x}\right)$ , then $f'(x) =$<br>a. $\frac{-1}{x^2 + x}$ b. $\frac{x}{\sqrt{x^2 - 1}}$ c. $\frac{x^2}{x^2 + 1}$<br>d. $\frac{1}{x^2 + 1}$ e. $\frac{-1}{x^2 + 1}$<br>58. If $f(x) = \cos(\arccos)$ , what is the range of $f$ ?<br>a. $(x + 1 - 5 \times 5)$<br>58. If $f(x) = \cos(\arccos)$ , what is the range of $f$ ?<br>a. $(x + 1 - 5 \times 5)$<br>58. $(x + 1 - 5 \times 5)$<br>59. $(x + 1 - 5 \times 5)$<br>50. $(x + 1 - 5 \times 5)$<br>50. $(x + 1 - 5 \times 5)$<br>51. The coordinates of the point on the curve $y = x^3 - 6x^2$ at its point of inflection is<br>a. $y = -12x + 8$ b. $y = -12x + 40$<br>c. $y = 12x - 40$<br>51. The coordinates of the point on the curve $y = x^3 - 6x^2$ at its point of inflection is<br>a. $y = -12x + 40$<br>c. $y = 12x - 40$<br>51. The coordinates of the point on the curve $y = x^3 - 6x^2$ at its point of inflection is<br>a. $y = -12x + 40$<br>c. $y = 12x - 40$<br>51. The coordinates of the point on the curve $y = \frac{kx + 8}{k + x}$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ . What is the value of $k^2$ at $x = -2$ is $y = x + 4$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                         | a. $\frac{1}{4}$ b. $\sqrt{2}$ c. $\frac{1}{2}$                |                                                                                 |
| $\frac{1}{d_{x} - 1} = \frac{1}{d_{x} - 1} = \frac{1}{d_{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55. The $\lim_{x \to -\infty} \frac{(3-x)^2}{x}$ is                                                                     | d 1 e $-\frac{\sqrt{2}}{\sqrt{2}}$                             |                                                                                 |
| d. $-1$ e. nonexistent<br>56. If $f(x) = \ln x$ and $g(x) = e^x$ , then $f(g(4)) =$<br>a. $\ln 4$ b. $e^4$ c. $-4$<br>d. $e^4$ e. $-4$<br>57. If $f(x) = \arctan\left(\frac{1}{x}\right)$ , then $f'(x) =$<br>a. $\frac{-1}{x^2 + x}$ b. $\frac{x}{\sqrt{x^2 - 1}}$ c. $\frac{x^2}{x^2 + 1}$<br>d. $\frac{1}{x^2 + 1}$ e. $\frac{-1}{x^2 + 1}$ c. $\frac{x^2}{x^2 + 1}$<br>58. If $f(x) = \cosh(x)$ , what is the range of $f$ ?<br>a. $(x   -\frac{1}{2} \le x \le \frac{1}{2})$<br>b. $(x   -1 \le x \le 1)$<br>58. If $f(x) = \cosh(x)$ , what is the range of $f$ ?<br>a. $(x   -\frac{1}{2} \le x \le \frac{1}{2})$<br>b. $(x   -\frac{1}{2} \le x \le \frac{1}{2})$<br>c. $(x   0 \le x \le 1)$<br>59. If $f(x) = \cos(\arctan x)$ , what is the range of $f$ ?<br>a. $(x   -\frac{1}{2} \le x \le \frac{1}{2})$<br>b. $(x   -\frac{1}{2} \le x \le \frac{1}{2})$<br>c. $(x   0 \le x \le 1)$<br>59. If $f(x) = \cosh(x)$ , what is the range of $f$ ?<br>a. $(x   -\frac{1}{2} \le x \le \frac{1}{2})$<br>b. $(x   -\frac{1}{2} \le x \le \frac{1}{2})$<br>c. $(x   0 \le x \le 1)$<br>50. If $f(x) = \cos(-1)$ , $(x   -x   -x   -1)$<br>51. If $f(x) = \cos(-1)$ , $(x   -x   -x   -x   -x   -x   -x   -x   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         | 2                                                              | e. m(zsecx)                                                                     |
| a. $-1$ e. nonexistentb. $t$ f. the controlates of the point of the turve<br>$y = x^2 + 1$ which is closest to $(3, 1)$ is<br>$(3, 1)$ is<br>$(3, 1)$ f. $(x) = sin(x^2)$ , then how many critical points<br>does the function $f(x)$ have on the interval $[0.2, 2.6]$ ?<br>$(3, 0)$<br>$(3, 1)^3$ 56. If $f(x) = lox and g(x) = e^x, then f(g(4)) =a. ln 4b. e^457. If f(x) = arctan(\frac{1}{x}), then f'(x) =(3, \frac{x^2}{-1})58. (1 + \frac{1}{x})^{3x} =(3, \frac{1}{x^2 + 1})59. (1 + \frac{1}{x})^{3x} =(3, 2e^3)58. (1 + \frac{1}{x})^{2x}57. (1 + \frac{1}{x})^{2x} =(3, 2e^3)58. (1 + \frac{1}{x})^{2x} =(3, 2e^3)58. (1 - 1 \le x \le 1)59. (1 + 1)(t-3)^350. (1 + 1)(t-3)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                         |                                                                | 67. * If the derivative of a function $f$ is given by                           |
| 56. If $f(x) = \ln x$ and $g(x) = e^x$ , then $f(g(4)) =$<br>a. $\ln 4$ b. $e^4$ c. 4<br>d. $e^{-4}$ e4<br>57. If $f(x) = \arctan\left(\frac{1}{x}\right)$ , then $f'(x) =$<br>a. $\frac{-1}{x^2 + x}$ b. $\frac{x}{\sqrt{x^2 - 1}}$ c. $\frac{x^2}{x^2 + 1}$<br>d. $\frac{1}{x^2 + 1}$ e. $\frac{-1}{x^2 + 1}$<br>58. If $f(x) = \cos(\arccos(x))$ , what is the range of $f$ ?<br>a. $(x \mid -1 \le x \le 0)$<br>b. $(x \mid -1 \le x \le 1)$<br>c. $(x \mid 0 \le x \le 1)$<br>64. *The equations of the tangent line to the curve<br>$y = x^3 - 6x^2$ at its point of inflection is<br>a. $y = 12x + 8$ b. $y = -12x + 40$<br>c. $y = 12x - 40$<br>b. $(x \mid -x \le x \le 1)$<br>a. $(1,2)$ b. $(2,5)$ c. $(3,10)$<br>d. $(\frac{3}{2}, \frac{3}{3})$ e. $(\frac{1}{2}, \frac{5}{4})$<br>a. $(1,2)$ b. $(2,5)$ c. $(3,10)$<br>d. $(\frac{3}{2}, \frac{3}{4})$ e. $(\frac{1}{2}, \frac{5}{4})$<br>a. $(1,2)$ b. $(2,5)$ c. $(3,10)$<br>d. $(\frac{3}{2}, \frac{3}{4})$ e. $(\frac{1}{2}, \frac{5}{4})$<br>a. $(1,2)$ b. $(2,5)$ c. $(3,10)$<br>d. $(\frac{3}{2}, \frac{3}{4})$ e. $(\frac{1}{2}, \frac{5}{4})$<br>a. $(1,2)$ b. $(2,5)$ c. $(3,10)$<br>d. $(\frac{3}{2}, \frac{3}{4})$ e. $(\frac{1}{2}, \frac{5}{4})$<br>a. $(1,2)$ b. $(2,5)$ c. $(3,10)$<br>d. $(\frac{3}{2}, \frac{3}{4})$ e. $(\frac{1}{2}, \frac{5}{4})$<br>a. $(1,2)$ b. $(2,5)$ c. $(3,10)$<br>d. $(\frac{3}{2}, \frac{3}{4})$ e. $(\frac{1}{2}, \frac{5}{4})$<br>a. $(1,2)$ b. $(2,5)$ c. $(3,10)$<br>d. $(\frac{3}{2}, \frac{3}{4})$ e. $(\frac{1}{2}, \frac{5}{4})$<br>c. $(3,10)$<br>d. $(\frac{3}{2}, \frac{3}{4})$ e. $(\frac{1}{2}, \frac{5}{4})$<br>c. $(1,1, \frac{1}{2})$ c. $(1,1)$<br>c. $(x \mid 0, 2, \frac{1}{2})$<br>c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d. –1 e. nonexistent                                                                                                    |                                                                |                                                                                 |
| a. $\ln 4$ b. $e^{4}$ c. 4<br>d. $e^{-4}$ e4<br>57. If $f(x) = \arctan\left(\frac{1}{x}\right)$ , then $f'(x) =$<br>a. $\frac{-1}{x^{2} + x}$ b. $\frac{x}{\sqrt{x^{2} - 1}}$ c. $\frac{x^{2}}{x^{2} + 1}$<br>d. $\left(\frac{3}{2}, \frac{1}{3}\right)$ e. $\left(\frac{1}{2}, \frac{1}{4}\right)^{3x} =$<br>a. $\frac{-1}{x^{2} + x}$ b. $\frac{x}{\sqrt{x^{2} - 1}}$ c. $\frac{x^{2}}{x^{2} + 1}$<br>d. $\frac{1}{x^{2} + 1}$ e. $\frac{-1}{x^{2} + 1}$ c. $\frac{-1}{x^{2} + 1}$<br>58. If $f(x) = \cos(\arccos(x))$ , what is the range of $f$ ?<br>a. $\{x \mid -1 \le x \le 0\}$<br>b. $\{x \mid -1 \le x \le 1\}$<br>c. $\{x \mid 0 \le x \le 1\}$<br>d. $\{x \mid -\frac{1}{2} \le x \le \frac{\pi}{2}\}$<br>e. $\{x \mid 0 \le x \le 1\}$<br>d. $\{x \mid -\frac{1}{2} \le x \le \frac{\pi}{2}\}$<br>e. $\{x \mid 0 \le x \le 1\}$<br>d. $\left(\frac{3}{2}, \frac{1}{4}\right)$ e. $\left(\frac{1}{2}, \frac{1}{4}\right)^{3x} =$<br>a. $\left(\frac{1}{2}, \frac{1}{4}\right)^{3x} =$<br>a. $\left(\frac{1}{2}, \frac{1}{4}\right)^{3x} =$<br>a. $\left(\frac{1}{2}, \frac{1}{4}\right)^{3x} =$<br>a. $\left(\frac{1}{2}, \frac{1}{2}\right)^{3x} =$<br>a. $\left(\frac{1}{2}, \frac{1}{2}\right)^{3x} =$<br>a. $\left(\frac{1}{2}, \frac{1}{4}\right)^{3x} =$<br>b. $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)^{3x} =$<br>b. $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56. If $f(x) = \ln x$ and $g(x) = e^x$ then $f(g(A)) =$                                                                 |                                                                | does the function $f(x)$ have on the interval [0.2,                             |
| d. $e^{-4}$ e. $-4$<br>57. If $f(x) = \arctan\left(\frac{1}{x}\right)$ , then $f'(x) =$<br>a. $\frac{-1}{x^2 + x}$ b. $\frac{x}{\sqrt{x^2 - 1}}$ c. $\frac{x^2}{x^2 + 1}$<br>d. $\frac{1}{x^2 + 1}$ e. $\frac{-1}{x^2 + 1}$ c. $\frac{1}{x^2 + 1}$<br>58. If $f(x) = \cos(\arccos(x))$ , what is the range of $f$ ?<br>a. $\{x \mid -1 \le x \le 0\}$<br>b. $\{x \mid -1 \le x \le 1\}$<br>c. $\{x \mid 0 \le x \le 1\}$<br>63. A particle moves along the $x - axis$ so that at any time $t$ its position is given by<br>$x(t) = (t+1)(t-3)^3$ . For what values of $t$ is the velocity of the particle increasing?<br>a. $\{x \mid -1 \le x \le 0\}$<br>b. $\{x \mid -1 \le x \le 1\}$<br>c. $\{x \mid 0 \le x \le 1\}$<br>64. * The equations of the tangent line to the curve $y = x^3 - 6x^2$ at its point of inflection is<br>a. $y = -12x + 8$ b. $y = -12x + 40$<br>c. $y = 12x - 40$<br>65. * The derivative of $(4x)^3 \cdot (2x)^6$ is<br>a. $72x^8$ b. $124x^{17}$<br>c. $30x(4x)^2(2x)^5$ d. $72x(4x)^2(2x)^5$<br>e. $144(4x)^2(2x)^5$<br>66. *The second derivative of a function is given by<br>$f''(x) = 0.5 + \cos x - e^{-x}$ . How many points of inflection is given by<br>$x(t) = (t+1)(t-3)^3$ . For what values of $t$ is the function $f(x)$ have on the interval $0 \le x \le 20$ ?<br>a. None b. Three c. Six d. Seven e. Ten<br>70. *The equation of the line tangent to the curve $y = \frac{kx + 8}{k + x}$ at $x = -2$ is $y = x + 4$ . What is the $x = y = 12x - 40$<br>b. $x = 12x - 40$<br>b. $x = -3$ b. $-1$ c. $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                         |                                                                | -                                                                               |
| 57. If $f(x) = \arctan\left(\frac{1}{x}\right)$ , then $f'(x) =$<br>a. $\frac{-1}{x^2 + x}$ b. $\frac{x}{\sqrt{x^2 - 1}}$ c. $\frac{x^2}{x^2 + 1}$<br>d. $\frac{1}{x^2 + 1}$ e. $\frac{-1}{x^2 + 1}$ c. $\frac{-1}{x^2 + 1}$<br>58. If $f(x) = \cos(\arctan(x))$ , what is the range of $f$ ?<br>a. $\{x \mid -1 \le x \le 0\}$<br>b. $\{x \mid -1 \le x \le 1\}$<br>c. $\{x \mid 0 \le x \le \frac{x}{2}\}$<br>e. $\{x \mid 0 \le x \le 1\}$<br>64. * The equations of the tangent line to the curve<br>$y = x^3 - 6x^2$ at its point of inflection is<br>a. $y = -12x + 8$ b. $y = -12x + 40$<br>c. $y = 12x - 40$<br>a. $3e^3$ b. 1 c. $-1$<br>d. $3e^3$ b. $1 c1$<br>d. $3e^3$ b. $1 c1$<br>d. $3e^3$ b. $1 c1$<br>d. $3e^3$ b. $1 c1$<br>d. $3e^3$ b. $-1$ c. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02                                                                                                                    |                                                                | a. 0 b. 1 c. 2 d. 3 e. 4                                                        |
| 57. If $f(x) = \arctan\left(\frac{1}{x}\right)$ , then $f'(x) =$<br>a. $\frac{-1}{x^2 + x}$ b. $\frac{x}{\sqrt{x^2 - 1}}$ c. $\frac{x^2}{x^2 + 1}$<br>d. $\frac{1}{x^2 + 1}$ e. $\frac{-1}{x^2 + 1}$ c. $\frac{-1}{x^2 + 1}$<br>58. If $f(x) = \cos(\arctan(x))$ , what is the range of $f$ ?<br>a. $\{x \mid -1 \le x \le 0\}$<br>b. $\{x \mid -1 \le x \le 1\}$<br>c. $\{x \mid 0 \le x \le 1\}$<br>a. $\{x \mid 0 \le x \le 1\}$<br>b. $\{x \mid 0 \le x \le 1\}$<br>c. $\{x \mid 0 \le x \le 1\}$<br>b. $\{x \mid 0 \le x \le 1\}$<br>c. $\{x \mid 0 \le 1\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d. <i>e</i> <sup>-4</sup> e4                                                                                            | 62. $\lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^{3} =$ |                                                                                 |
| 57. If $f(x) = \arctan\left(\frac{1}{x}\right)$ , then $f'(x) =$<br>a. $\frac{-1}{x^2 + x}$ b. $\frac{x}{\sqrt{x^2 - 1}}$ c. $\frac{x^2}{x^2 + 1}$<br>d. $3e^3$ e. $e^3$<br>(3. $8e^3$ e. $e^3$<br>(5. $3particle moves along the x - axis so that at any time t its position is given byd. \frac{1}{x^2 + 1} e. \frac{-1}{x^2 + 1}(6. 4e^{-1} + 1e^{-1} + 1e^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         |                                                                |                                                                                 |
| a. $\frac{-1}{x^2 + x}$ b. $\frac{x}{\sqrt{x^2 - 1}}$ c. $\frac{x^2}{x^2 + 1}$<br>d. $\frac{1}{x^2 + 1}$ e. $\frac{-1}{x^2 + 1}$ c. $\frac{-1}{x^2 + 1}$<br>58. If $f(x) = \cos(\arcsin x)$ , what is the range of $f$ ?<br>a. $\{x \mid -1 \le x \le 0\}$<br>b. $\{x \mid -1 \le x \le 1\}$<br>c. $\{x \mid 0 \le x \le 1\}$<br>63. A particle moves along the $x - axis so that at any time t its position is given by x(t) = (t + 1)(t - 3)^3. For what values of t is the velocity of the particle increasing?a. \{x \mid -1 \le x \le 0\}b. \{x \mid -1 \le x \le 1\}c. \{x \mid 0 \le x \le 1\}63. A particle moves along the x - axis so that at any time t its position is given by x(t) = (t + 1)(t - 3)^3. For what values of t is the velocity of the particle increasing?a. t > 3 only b. 0 < t < 3 only c. 1 < t < 3 only d. t < 1 or t > 3e. 0 < t < 3 or t > 364. * The equations of the tangent line to the curve y = x^3 - 6x^2 at its point of inflection is a. y = -12x + 40c. y = 12x - 8 d. y = -12x + 40c. y = 12x - 4065. A particle moves along the x - axis so that at any time t its position is given by x(t) = (t + 1)(t - 3)^3. For what values of t is the velocity of the particle increasing?a. t > 3 only b. 0 < t < 3 only c. 1 < t < 3 only d. t < 1 or t > 3e. 144(4x)^2(2x)^369. *The second derivative of a function is given by f''(x) = 0.5 + \cos x - e^{-x}. How many points of inflection t < x < 20?a. None b. Three c. Six d. Seven e. Ten70. *The equation of the line tangent to the curve y = \frac{kx + 8}{k + x} at x = -2 is y = x + 4. What is the value of k?a. -3 b. -1 c. 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [7, 1f, f(u)] = exten(1) then $f'(u)$                                                                                   |                                                                |                                                                                 |
| a. $\frac{-1}{x^2 + x}$ b. $\frac{x}{\sqrt{x^2 - 1}}$ c. $\frac{x^2}{x^2 + 1}$ 63. A particle moves along the $x - axis so that at any time t its position is given by69. *The second derivative of a function is given byd. \frac{1}{x^2 + 1}e. \frac{-1}{x^2 + 1}e. \frac{-1}{x^2 + 1}x(t) = (t + 1)(t - 3)^3. For what values of t is the velocity of the particle increasing?a. t > 3 onlyb. 0 < t < 3 onlyf"(x) = 0.5 + cos x - e^{-x}. How many points of inflection does the function f(x) have on the interval 0 \le x \le 20?58. If f(x) = cos(arcsinx), what is the range of f?a. t > 3 onlyb. 0 < t < 3 onlyc. 0 < t < 3 onlya. \{x \mid -1 \le x \le 0\}b. \{x \mid -1 \le x \le 1\}c. \{x \mid 0 \le x \le \frac{\pi}{2}\}64. * The equations of the tangent line to the curvey = x^3 - 6x^2 at its point of inflection isa. \{x \mid 0 \le x \le 1\}x = -2 is y = x + 4. What is thee. \{x \mid 0 \le x \le 1\}y = 12x - 8y = -12x + 40y = -12x + 12e. y = 12x - 40y = -12x + 40x = -2 is y = x + 4. What is the$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57. If $f(x) = \arctan\left(\frac{-x}{x}\right)$ , then $f(x) =$                                                        | d. 3 e e. e                                                    |                                                                                 |
| d. $\frac{1}{x^2+1}$ e. $\frac{-1}{x^2+1}$<br>58. If $f(x) = \cos(\arcsin x)$ , what is the range of $f$ ?<br>a. $\{x \mid -1 \le x \le 0\}$<br>b. $\{x \mid -1 \le x \le 1\}$<br>c. $\{x \mid 0 \le x \le 1\}$<br>a. $\{x \mid 0 \le x \le 1\}$<br>b. $\{x \mid 0 \le x \le 1\}$<br>c. $\{x \mid 0 \le x \le 1\}$                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-1$ $x^{2}$                                                                                                            | 63. A particle moves along the $x$ – axis so that at           | e. 144(4 <i>x</i> ) (2 <i>x</i> )                                               |
| d. $\frac{1}{x^2+1}$ e. $\frac{-1}{x^2+1}$ $x(t)=(t+1)(t-3)^3$ . For what values of t is the<br>velocity of the particle increasing?f''(x)=0.5+cos x-e^{-x}. How many points of<br>inflection does the function $f(x)$ have on the<br>interval $0 \le x \le 20$ ?58. If $f(x) = cos(arcsinx)$ , what is the range of f?<br>a. $\{x \mid -1 \le x \le 0\}$<br>b. $\{x \mid -1 \le x \le 1\}$ $x(t)=(t+1)(t-3)^3$ . For what values of t is the<br>velocity of the particle increasing?<br>a. $t > 3$ only<br>b. $0 < t < 3$ only<br>c. $1 < t < 3$ only<br>d. $t < 1$ or $t > 3$ f''(x)=0.5+cos x-e^{-x}. How many points of<br>inflection does the function $f(x)$ have on the<br>interval $0 \le x \le 20$ ?<br>a. None<br>b. Three<br>c. Six<br>d. Seven<br>e. Ten64. * The equations of the tangent line to the curve<br>$y=x^3-6x^2$ at its point of inflection is<br>a. $y=-12x+8$<br>b. $y=-12x+40$<br>c. $y=12x-40$ 70. *The equation of the line tangent to the curve<br>$y=\frac{kx+8}{k+x}$ at $x=-2$ is $y=x+4$ . What is the<br>value of $k$ ?<br>a. $-3$<br>b. $-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a. $\frac{1}{x^2 + x}$ b. $\frac{1}{\sqrt{x^2 - 1}}$ c. $\frac{1}{x^2 + 1}$                                             |                                                                |                                                                                 |
| $\frac{\sqrt{elocity}}{\sqrt{1-1}} = \frac{\sqrt{1-1}}{\sqrt{1-1}} = $                                                                                                                                                                                                  | d 1 –1                                                                                                                  | $x(t) = (t+1)(t-3)^3$ . For what values of t is the            |                                                                                 |
| 58. If $f(x) = \cos(\arcsin x)$ , what is the range of $f$ ?a. $t > 3$ onlyb. $0 < t < 3$ onlyd. $t < 1$ or $t > 3$ a. $\{x \mid -1 \le x \le 0\}$ a. $t > 3$ onlyd. $t < 1$ or $t > 3$ a. $t < 3$ onlyd. $t < 1$ or $t > 3$ b. $\{x \mid -1 \le x \le 1\}$ c. $\{x \mid 0 \le x \le \frac{\pi}{2}\}$ 64. * The equations of the tangent line to the curvea. $y = x^3 - 6x^2$ at its point of inflection isa. $y = -12x + 8$ b. $y = -12x + 40$ c. $\{x \mid 0 \le x \le 1\}$ a. $y = -12x - 8$ d. $y = -12x + 12$ c. $y = 12x - 40$ for $x < 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | u. $\frac{1}{x^2 + 1}$ e. $\frac{1}{x^2 + 1}$                                                                           |                                                                |                                                                                 |
| a. $\{x \mid -1 \le x \le 0\}$<br>b. $\{x \mid -1 \le x \le 1\}$ b. $\{x \mid -1 \le x \le 1\}$ c. $\{x \mid 0 \le x \le \frac{\pi}{2}\}$<br>e. $\{x \mid 0 \le x \le 1\}$ e. $0 < t < 3 \text{ or } t > 3$ d. $1 < t < 1 \text{ or } t > 5$ d. $1 < t < 0 \text{ or } t > 5$ c. $\{x \mid 0 \le x \le \frac{\pi}{2}\}$<br>e. $\{x \mid 0 \le x \le 1\}$ 64. * The equations of the tangent line to the curve<br>$y = x^3 - 6x^2$ at its point of inflection is<br>a. $y = -12x + 8$<br>b. $y = -12x + 40$<br>c. $y = 12x - 8$<br>e. $y = 12x - 40$ 70. *The equation of the line tangent to the curve<br>$y = \frac{kx + 8}{k + x}$ at $x = -2$ is $y = x + 4$ . What is the<br>value of $k$ ?<br>a. $-3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         | a. $t > 3$ only b. $0 < t < 3$ only                            | • • •                                                                           |
| b. $\{x \mid -1 \le x \le 1\}$<br>c. $\{x \mid 0 \le x \le \frac{\pi}{2}\}$<br>d. $\{x \mid -\frac{\pi}{2} \le x \le \frac{\pi}{2}\}$<br>e. $\{x \mid 0 \le x \le 1\}$<br>64. * The equations of the tangent line to the curve<br>$y = x^3 - 6x^2$ at its point of inflection is<br>a. $y = -12x + 8$<br>b. $y = -12x + 40$<br>c. $y = 12x - 8$<br>e. $y = 12x - 40$<br>64. * The equations of the tangent line to the curve<br>$y = \frac{kx + 8}{k + x}$ at $x = -2$ is $y = x + 4$ . What is the<br>value of $k$ ?<br>a. $-3$<br>b. $-1$<br>c. $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         |                                                                | a. None b. Three c. Six                                                         |
| c. $\{x \mid 0 \le x \le \frac{\pi}{2}\}$ 64. * The equations of the tangent line to the curve70. *The equation of the line tangent to the curved. $\{x \mid -\frac{\pi}{2} \le x \le \frac{\pi}{2}\}$ $y = x^3 - 6x^2$ at its point of inflection is $y = x^3 - 6x^2$ at its point of inflection ise. $\{x \mid 0 \le x \le 1\}$ $x = -12x + 8$ $y = -12x + 40$ $y = \frac{kx + 8}{k + x}$ at $x = -2$ is $y = x + 4$ . What is thevalue of k? $x = -3$ $y = 12x - 40$ $x = -3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · ·                                                                                                                     | e. 0 < <i>t</i> < 3 or <i>t</i> > 3                            | d. Seven e. Ten                                                                 |
| d. $\{x \mid -\frac{\pi}{2} \le x \le \frac{\pi}{2}\}$<br>e. $\{x \mid 0 \le x \le 1\}$<br>$y = x^3 - 6x^2 \text{ at its point of inflection is}$ a. $y = -12x + 8$<br>b. $y = -12x + 40$<br>c. $y = 12x - 8$<br>e. $y = 12x - 40$<br>b. $y = -12x + 12$<br>a. $-3$<br>b. $-1$<br>c. $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                       | 64. * The equations of the tangent line to the surve           |                                                                                 |
| e. $\{x \mid 0 \le x \le 1\}$<br>e. $\{x \mid 0 \le x \le 1\}$<br>b. $y = -12x + 8$<br>c. $y = 12x - 8$<br>e. $y = 12x - 40$<br>b. $y = -12x + 40$<br>d. $y = -12x + 12$<br>e. $y = \frac{12x + 4}{k + x}$<br>value of k?<br>a. $-3$<br>b. $-1$<br>c. $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · _                                                                                                                     |                                                                |                                                                                 |
| c. $y = 12x - 8$ d. $y = -12x + 12$ value of k?e. $y = 12x - 40$ a. $-3$ b. $-1$ c. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         |                                                                | $y = \frac{x + y}{k + y}$ at $x = -2$ is $y = x + 4$ . What is the              |
| e. $y = 12x - 40$ a. $-3$ b. $-1$ c. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                         |                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                         |                                                                | d. 3 e. 4                                                                       |

71. \*How many zeros does the function y = sin(lnx) have for  $0 < x \le 1$ ? a. One b. Two c. Three d. Four e. More than four 72. \*For all x > 0, if  $f(\ln x) = x^2$ , then  $f(x) = x^2$ a.  $\sqrt{e^x}$ с. е<sup>√х</sup> b. 2ln*x* d.  $\sqrt{\ln x}$  e.  $e^{2x}$ 73. What is the domain of the function  $f(x) = \sqrt{\frac{x+2}{x-1}}$ ? b. {*x*: *x* ≤ −2} a. { $x: x \neq 1$ } c. { $x: x \le -2 \text{ or } x > 1$ } d. {*x*: *x* > 1} e. { $x: -2 \le x < 1$ } 74. The position of a particle on the x – axis at time t, t > 0, is lnt. The average velocity of the particle for  $1 \le t \le e$  is b.  $\frac{1}{e} - 1$  c.  $\frac{1}{e-1}$ a. 1  $e_e - 1$ d. e 75. If  $f(n+1) = \frac{2f(n)+1}{2}$  and f(1) = 2, then f(37) = c. 20 a. 18 b. 19 d. 21 e. 22 76. If  $f(x) = \frac{x+1}{x}$ ,  $x \neq 0$ , and f(g(x)) = x, then g(x)= a. x(x-1) b. 1-x c.  $\frac{x^2}{x+1}$ d.  $\frac{1}{x-1}$  e. x(x+1)

77. The slope of the line normal to the graph of  $y = \ln \frac{2}{x}$  at x = 2 is a. 2 b. –1 c. –2 d. −½ e. undefined 78. The minimum value of  $f(x) = e^x - 2x$  is b.  $e^2 - 4$  c.  $\sqrt{e} - 1$ a. In2 d. 2(1 – ln2) e. 2 79. If f(x) = 3 + |x - 2|, then f'(2) is a. 3 b. 1 c. –1 d. 2 e. nonexistent 80. The volume of an expanding sphere is increasing at a rate of 12 cubic feet per second. When the volume of the sphere is  $36\pi$  cubic feet, how fast, in square feet per second, is the surface area increasing? d.  $\frac{8\pi}{2}$ e. 10 a. 8 b. 6 c. 8π 81. If  $y = 5^{(x^3-2)}$ , then  $\frac{dy}{dy} =$ a. (x<sup>3</sup>-2)5<sup>(x<sup>3</sup>-2)</sup> b.  $3x^{2}(\ln 5)5^{(x^{3}-2)}$ c.  $(3x^{2})5^{(x^{3}-2)}$ d. (In5)5<sup>(x<sup>3</sup>-2)</sup> e. x<sup>3</sup>(ln5)5<sup>(x<sup>3</sup>-2)</sup> 82. If  $y = \frac{1-x}{x-1}$ , then  $\frac{dy}{dx} =$ a. –1 b. 0 c.  $\frac{-1}{x-1}$ d.  $\frac{-2}{x-1}$  e.  $\frac{-2x}{(x-1)^2}$ 83. The fundamental period for the graph of  $y = 1 - 2\sin^2(2x)$  is a. 4 b.  $\frac{\pi}{4}$  c.  $\frac{\pi}{2}$ d. *π* e. 2π

84.  $\frac{d}{dx}\left(\frac{\sin x}{1+\cos x}\right) =$ a. 1 b.  $\frac{1}{1+\cos x}$  c.  $\frac{-1}{1+\cos x}$ d. -cotx e.  $\frac{2\cos^2 x}{(1 + \cos x)^2}$ 85. The  $\lim_{x\to 0} \frac{\cos(\frac{\pi}{2} + x) - \cos(\frac{\pi}{2} - x)}{x}$  is a. 1 b. -2 c. -1 d. 0 e. 2 86. If  $y = \arcsin\left(\frac{3x}{4}\right)$ , then  $\frac{dy}{dy} =$ a.  $\frac{-3}{\sqrt{16-9x^2}}$  b.  $\frac{12}{16+9x^2}$ c.  $\frac{4}{\sqrt{16-9x^2}}$  d.  $\frac{12}{\sqrt{16-9x^2}}$ e.  $\frac{3}{\sqrt{16-9x^2}}$ 87. If the graph of a function f is symmetric about the y-axis, and contains the point (-2,1), which point is also on f? a. (–2 ,–1) b. (1,-2) c. (0,0) d. (1,2) e. (2,1) 88. \*If  $e^{xy} = 2$ , then at the point (1,ln2),  $\frac{dy}{dy} =$ a. –In2 b. 2ln2 c. ln2 d. –2e e. –4ln2 89. \*At the point of intersection of  $f(x) = \cos x$  and  $q(x) = 1 - x^2$ , the tangent lines are a. the same line b. parallel lines c. perpendicular lines d. intersecting but not perpendicular lines e. none of the above

90. \*The  $\lim_{h \to 0} \frac{\tan 2(x+h) - \tan(2x)}{h}$  is a. 0 b. 2cot(2x) c. sec<sup>2</sup>(2x) d. 2sec<sup>2</sup>(2x) e. nonexistent

91. \*A particle moves along the *x*-axis so that its position at any time t > 0 is given by  $x(t) = t^4 - 10t^3 + 29t^2 - 36t + 2$ . For which value of *t* is the <u>speed</u> the greatest? a. t = 1 b. t = 2 c. t = 3d. t = 4 e. t = 5

- 92. \*A particle moves along the *x*-axis so that at any time *t* its position is given by  $x(t) = \frac{1}{2} \sin t + \cos(2t)$ . What is the acceleration of the particle at  $t = \frac{\pi}{2}$ ? a. 0 b.  $\frac{1}{2}$  c.  $\frac{3}{2}$  d.  $\frac{5}{2}$  e.  $\frac{7}{2}$
- 93. \*The <u>derivative</u> of a function if given by f'(x) = (sin x)(cos²(3x)). Which of the following is true about the function f(x) for -π≤x≤π ?
  a. f(x) is an odd function
  b. f(x) is increasing for all values in the interval
  c. f(x) has exactly one relative minimum in the interval
  d. f(x) has no points of inflection in the interval
  e. f(-π) is the absolute minimum value
  94. \*How many points of inflection does the

function 
$$f(x) = \left(\frac{\pi}{3}\right)^{x^{-3}}$$
 have?  
a. None b. One c. Two  
d. Three e. Infinitely many

95. \*The function  $y = x^4 + bx^2 + 8x + 1$  has a horizontal tangent and a point of inflection for the same value of x. What must be the value of b? a. –1 b. 4 c. 1 d. 6 e. –6 96. If  $y = (2x^2 + 1)^4$ , then  $\frac{dy}{dx} =$ b.  $4(2x^2+1)^3$ a. 16x<sup>3</sup> c.  $4x(2x^2+1)^3$  d.  $16(2x^2+1)^3$ e.  $16x(2x^2+1)^3$ 97. If the graph of a function f has a horizontal tangent at the point (1,2), what is the equation of the normal line at this point? a. y = 2 b. y = 1c. y = -1d. *x* = 1 e. *x* = 0 98. If  $f(x) = x^3 - x + 3$  and if c is the only real number such that f(c) = 0, then c is between a. –2 and –1 b. -1 and 0 c. 0 and 1 d. 1 and 2 e. 2 and 3 99. The graph of  $y = 2x^3 + 24x - 18$  is a. Increasing for all x b. Decreasing for all x c. Only decreasing for all x such that |x| > 2d. Only increasing for all x such that |x| < 2e. Only decreasing for all x such that |x| < -2100. For how many real numbers x does  $e^x = \ln |x|$ ? a. 0 b. 1 c. 2 d. 3 e. Infinitely many 101. If  $f(x) = x\sqrt[3]{x}$ , then  $f'(x) = x\sqrt[3]{x}$ a.  $4x^{3}$  b.  $\frac{3}{7}x^{\frac{7}{3}}$  c.  $\frac{4}{3}x^{\frac{1}{3}}$ d.  $\frac{1}{3}x^{\frac{1}{3}}$  e.  $\frac{1}{3}x^{-\frac{2}{3}}$ 

102. 
$$sin(xy) = x^2$$
, then  $\frac{dy}{dx} =$   
a.  $2x sec(xy)$  b.  $\frac{sec(xy)}{x^2}$   
c.  $2x sec(xy) - y$  d.  $\frac{2x sec(xy)}{y}$   
e.  $\frac{2x sec(xy) - y}{x}$   
103. How many points of inflection does the

103. How many points of inflection does the graphof  $y = 2x^6 + 9x^5 + 10x^4 - x + 2$  have?a. Noneb. Onec. Twod. Threee. Four

104. 
$$\lim_{x \to 2} \frac{2^{\frac{x}{2}} - 2}{2^{x} - 4}$$
 is  
a. 0 b.  $\frac{1}{4}$  c.  $\frac{1}{2}$   
d. ln2 e. nonexistent

105. The graph of 
$$y = \frac{x}{1 - |x|}$$
 has

- a. No horizontal asymptotes and one vertical asymptote
- b. One horizontal asymptote and one vertical asymptote
- c. Two horizontal asymptotes and one vertical asymptote
- d. One horizontal asymptote and two vertical asymptotes
- e. Two horizontal asymptotes and two vertical asymptotes

106. If 
$$f(x) = \begin{cases} x^2 + 2, x \le 1 \\ 2x + 1, x > 1 \end{cases}$$
, then  $f'(1)$  is  
a.  $\frac{1}{2}$  b. 1 c. 2  
d. 3 e. nonexistent

117. \*A particle moves along the *x*-axis so that its 113. \*Suppose that f(x) is a twice-differentiable 107. For what value of k will  $\frac{8x+k}{x^2}$  have a relative function on the closed interval [*a*,*b*]. If position at any time t > 0 is given by f'(c) = 0 for a < c < b, which of the following  $x(t) = t^3 + 22t + 3 - 6\cos(\pi t)$ . For what value of minimum at x = 4? statements must be true? t is the velocity negative? a. -32 b. -16 c. 0 d. 16 e. 32 I. f(a) = f(b)a.  $t = \frac{1}{2}$ b. *t* = 1 C.  $t = \frac{3}{2}$ II. f has a relative extremum at x = c108. If f is a function such that f(0) = 1, f(1) = 2, d. *t* = 2 e. The velocity is never negative III. f has a point of inflection at x = cand  $f(n) = \frac{f(n-2)}{f(n-1)}$  for all integers  $n \ge 0$ , what a. None 118. Which of the following functions is symmetric b. I only with respect to the origin? is the value of f(4)? c. II only a. v = |x|b. ½ a. ½ b.  $v = e^x$ d. I and II d. y = sinxc. 1 d. 2 c.  $y = x^3 + 1$ e. II and III e. It cannot be determined from the given e.  $v = \cos x$ information given. 119. The  $\lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$  at the point x = 2 is 114. \*  $\frac{d}{dx}\left(x^{\frac{1}{\ln x}}\right) =$ 109. What is the maximum value of the derivative b. 12 c. 8 a. 36 d. 2 e. 0 of  $f(x) = 3x^2 - x^3$ ? a. 0 b. 1 c. Inx d. xlnx e.  $x^{\ln x}$ a. 0 b. 1 c. 2 d. 3 e. 4 120. If  $f(x) = (x-1)^2 \cos x$ , then f'(0) =115. \*Let f be a function which is continuous on a. –2 b. –1 d. 1 c. 0 e. 2 [2,10] and whose derivative is given by 110. If  $f(x) = x^{-\frac{1}{3}}$ , what is the derivative of the  $f'(x) = \frac{\cos x}{\ln(x+1)}$ . Which of the following is true inverse of f(x)? 121. What is the domain of the function f given by a.  $x^{\frac{1}{3}}$  b.  $-\frac{1}{2}x^{-\frac{4}{3}}$  c.  $\frac{1}{2}x^{-\frac{2}{3}}$  $f(x) = \ln \sqrt{\frac{x+2}{x-4}}$ ? about f(x) on the interval [2,10]? d.  $-3x^{-2}$  e.  $-3x^{-4}$ I. f(x) is monotonic a.  $\{x: x < -2\}$  b.  $\{x: x \neq 4\}$ II. f(x) has a relative minimum c. {*x*: *x* > 4} d. {x: -2 < x < 4} 111. \*  $\lim_{h \to 0} \frac{2(x+h)^5 - 5(x+h)^3 - 2x^5 + 5x^3}{h}$  is III. f(x) has three points of inflection e. {*x*: *x* < −2 or *x* > 4} a. I only 122.  $\lim_{x\to 2} \frac{x-2}{2-x}$  is a. 0 b.  $10x^3 - 15x$ b. II only c. III only c.  $10x^4 + 15x^2$ d.  $10x^4 - 15x^2$ a. –1 b. 0 c. 1 d. II and III only e.  $-10x^4 + 15x^2$ d. 2 e. nonexistent e. I. II. and III 112. \*What is the 20<sup>th</sup> derivative of y = sin(2x)? 123. If the line y = 4x + 3 is tangent to the curve 116. \*If f is a continuous function on the closed a.  $-2^{20} \sin(2x)$ b.  $2^{20} \sin(2x)$  $y = x^2 + c$ , then c is interval [a,b], which of the following is NOT c.  $-2^{19}\cos(2x)$ d.  $2^{20} \cos(2x)$ necessarily true? a. 2 b. 4 c. 7 d. 11 e. 15 e.  $2^{21}\cos(2x)$ I. f has a minimum on [a,b] 124. If  $f(x) = \frac{\sin^2 x}{1 - \cos x}$ , then f'(x) =II. *f* has a maximum on [*a*,*b*] III. *f* ′(*c*) = 0 for *a* < *c* < *b* b. sinx a. cosx a. I only d. I and II only d. – cosx c. –sinx b. II only e. I. II. and III e. 2cosx

c. III only

| 125. The equation of the horizontal asymptote for<br>the graph of $u^{2} - e^{\frac{1}{x}}$ is                           | 130. If $f(x) = e^{2x}$ and $g(x)$ is the inverse function of $f(x)$ , then $f(g(\ln 2)) =$                                                             | 137. *If $f(x) = 2x^3$ , then the average rate of change<br>of f on the interval [0,2] is                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| the graph of $y = \frac{2 - e^{\frac{1}{x}}}{2 + e^{\frac{1}{x}}}$ is                                                    | a. ¼ b. ½ ln2 c. ln2                                                                                                                                    | a. 4 b. 8 c. 12 d. 16 e. 24                                                                                                                                                                            |
| a. $y = -1$<br>b. $y = -\frac{1}{2}$<br>c. $y = \frac{1}{3}$<br>d. $y = \frac{1}{2}$<br>e. $y = 1$                       | d. 2 e. 4<br>131. What is the area of the largest rectangle with                                                                                        | 138. *Which statement is true for the function $f$<br>(x) = ln(tanx) on the interval $\pi < x < \frac{5\pi}{4}$ ?                                                                                      |
| 126. Let $f(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & x \neq 1 \\ 1, & x = 1 \end{cases}$ . Which of the following     | lower base on the x – axis and upper vertices<br>on the curve $y=12-x^2$ ?<br>a. 8 b. 12 c. 16 d. 32 e. 48                                              | <ul> <li>a. f (x) is increasing at an increasing rate</li> <li>b. f (x) is increasing at a decreasing rate</li> <li>c. f (x) has an absolute maximum in the open</li> </ul>                            |
| statements is correct?                                                                                                   |                                                                                                                                                         | interval                                                                                                                                                                                               |
| a. f (x)is continuous at 1 since f (x) is defined at<br>x = 1.                                                           | 132. $\lim_{h \to 0} \frac{3^{2+h} - 9}{h}$ is                                                                                                          | d. <i>f</i> ( <i>x</i> ) has a point of inflection in the open interval                                                                                                                                |
| b. $f(x)$ is continuous at 1 since $\lim_{x\to 1} f(x)$ exists.<br>c. $f(x)$ is not continuous at 1 since $f(x)$ is not  | a. 0 b. 1 c. 9 d. 9ln3 e. 9 <i>e</i> <sup>3</sup>                                                                                                       | e. <i>f</i> ( <i>x</i> ) has a point of symmetry in the open interval                                                                                                                                  |
| defined at $x = 1$ .<br>d. $f(x)$ is not continuous at 1 since $\lim_{x\to 1} f(x)$                                      | 133. If $y^2 - 2xy = 21$ , then $\frac{dy}{dx}$ at (2,-3) is<br>a. $-\frac{6}{5}$ b. $-\frac{3}{5}$ c. $-\frac{2}{5}$ d. $\frac{3}{8}$ e. $\frac{3}{5}$ | 139. *A company must manufacture x calculators<br>weekly that can be sold for $75-0.01x$ dollars                                                                                                       |
| does not exist.<br>e. <i>f</i> (x) is not continuous at 1 since                                                          |                                                                                                                                                         | each, at a cost of $1850 + 28x - x^2 + 0.001x^3$<br>dollars for manufacturing x calculators. The                                                                                                       |
| $\lim_{x\to 1} f(x) \neq f(1)  .$                                                                                        | 134. *The maximum value of $\frac{k - \ln x}{x}$ occurs when x                                                                                          | number of calculators the company should<br>manufacture weekly in order to maximize its<br>weekly profit is                                                                                            |
| 127. The equation of the tangent line to the curve<br>$y = \frac{3x+4}{4x-3}$ at the point (1,7) is                      | a. k b. $k + 1$ c. $e^{k}$<br>d. $e^{k+1}$ e. $1 + e^{k}$                                                                                               | a. 611 b. 652 c. 683<br>d. 749 e. 754                                                                                                                                                                  |
| a. $y + 25x = 32$ b. $y - 31x = -24$ c. $y - 7x = 0$ d. $y + 5x = 12$ e. $y - 25x = -18$                                 | 135. *How many extrema (maximum and minimum)<br>does the function $f(x) = (x+2)^3(x-5)^2$ have on                                                       | 140. *A missile rises vertically from a point on the ground 75,000 feet from a radar station. If the                                                                                                   |
| 128. If $y = \ln(3x+5)$ , then $\frac{d^2y}{dx^2} =$                                                                     | the interval $-3 \le x \le 6$ ?<br>a. None b. One c. Two<br>d. Three e. Four                                                                            | missile is rising at a rate of 16,500 feet per<br>minute at the instant when it is 38,000 feet<br>high, what is the rate of change, in radians per<br>minute, of the missile's angle of elevation from |
| a. $\frac{3}{3x+5}$ b. $\frac{3}{(3x+5)^2}$ c. $\frac{9}{(3x+5)^2}$<br>d. $\frac{-9}{(3x+5)^2}$ e. $\frac{-3}{(3x+5)^2}$ | 136. *The tangent line to the graph of $y = \sin x$ at<br>the point $\left(\frac{2\pi}{3}, \frac{\sqrt{3}}{2}\right)$ crosses the sine graph at the     | the radar station at this instant?<br>a. 0.175 b. 0.219 c. 0.227<br>d. 0.469 e. 0.507                                                                                                                  |
| 129. The derivative of $e^{(e^x)}$ is                                                                                    | point where <i>x</i> =<br>a0.781 b. 4.712 c. 5.388                                                                                                      |                                                                                                                                                                                                        |
| a. $e^{x}$ b. $e^{(e^{x})}$ c. $e^{(e^{x^{2}})}$<br>d. $e^{(x+e^{x})}$ e. $e^{(xe^{x})}$                                 | d. 5.760 e. 6.283                                                                                                                                       |                                                                                                                                                                                                        |