Calculus Stuff To Know Cold

Basic Derivatives $\begin{aligned} & \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \\ & \frac{d}{d x}(\sin x)=\cos x \\ & \frac{d}{d x}(\cos x)=-\sin x \\ & \frac{d}{d x}(\tan x)=\sec ^{2} x \\ & \frac{d}{d x}(\sec x)=\sec x \tan x \\ & \frac{d}{d x}(\cot x)=-\csc { }^{2} x \\ & \frac{d}{d x}(\csc x)=-\csc x \cot x \\ & \frac{d}{d x}(\ln x)=\frac{1}{x} \\ & \frac{d}{d x}\left(e^{x}\right)=e^{x} \end{aligned}$	The Intermediate Value Theorem If the function $\mathrm{f}(\mathrm{x})$ is continuous on $[\mathrm{a}, \mathrm{b}]$, then for any number c between $f(a)$ and $f(b)$, there exists a number k in the open interval (a, b) such that $f(k)=c$ The Mean-Value Theorem If a function $f(x)$ is continuous on $[a, b]$ and the first derivative exists on the interval (a, b), then there exists a number c such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ Rolle's Theorem If the function $f(x)$ is continuous on $[a, b]$, the first derivative exists on the interval (a, b) and $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})$; then there exists a number c on (a, b) such that $f^{\prime}(c)=0$	Curve Sketching and Analysis 1. Find all x-intercepts and y-intercepts a. x-intercepts can be found by letting $y=0$ b. y-intercepts can be found by letting $x=0$ 2. Find all asymptotes a. Vertical Asymptotes - can be found by letting the denominator of a rational expression equal zero b. Horizontal Asymptotes-can be found by finding $\lim _{x \rightarrow \pm \infty} f(x)$ c. Oblique Asymptotes-can be found using long division 3. Find all relative extreme values where $f^{\prime}(x)=0$ or is undefined 4. Find all points of inflection where $f^{\prime \prime}(x)=0$ or is undefined 5. Plot all critical points, points of inflection, and intercepts 6. Plot any additional points you want
Differentiation Rules Chain Rule: $\frac{d}{d x}[f(u)]=f^{\prime}(u) \frac{d u}{d x}$ Product Rule: $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$ Quotient Rule: $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{\frac{d u}{d x} v+\frac{d v}{d x} u}{v^{2}}$	Average Value of a Function If the function $\mathrm{f}(\mathrm{x})$ is continuous on $[\mathrm{a}, \mathrm{b}]$ and the first derivative exists on (a, b), then there exists a number c in (a, b) such that $f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$ This value $f(c)$ is the "average value" of the function on the interval [a,b]	The Fundamental Theorem of Calculus $\int_{a}^{b} f(x) d x=F(b)-F(a)$ The $2^{\text {nd }}$ Fundamental Theorem of Calculus $\frac{d}{d x} \int_{a(x)}^{b(x)} f(t) d t=f[b(x)] b^{\prime}(x)-f[a(x)] a^{\prime}(x)$
More Derivatives $\begin{aligned} \frac{d}{d x}\left(\sin ^{-1} x\right) & =\frac{1}{\sqrt{1-x^{2}}} \\ \frac{d}{d x}\left(\cos ^{-1} x\right) & =\frac{-1}{\sqrt{1-x^{2}}} \\ \frac{d}{d x}\left(\tan ^{-1} x\right) & =\frac{1}{1+x^{2}} \\ \frac{d}{d x}\left(\cot ^{-1} x\right) & =\frac{-1}{1+x^{2}} \\ \frac{d}{d x}\left(\sec ^{-1} x\right) & =\frac{1}{\|x\| \sqrt{x^{2}-1}} \\ \frac{d}{d x}\left(\csc ^{-1} x\right) & =\frac{-1}{\|x\| \sqrt{x^{2}-1}} \end{aligned}$	Solids of Revolution Disk Method: $V=\pi \int_{a}^{b}[R(x)]^{2} d x$ Washer Method: $V=\pi \int_{a}^{b}[R(x)]^{2}-[r(x)]^{2} d x$ Shell Method: $V=2 \pi \int_{a}^{b} x f(x) d x$ Cross Sections: $V=\int_{a}^{b} A(x) d x$	Distance, Velocity, and Acceleration Let $\mathrm{s}(\mathrm{t})$ be position Velocity or Rate: $v(t)=s^{\prime}(t)$ Speed $=\|v\|$ Acceleration: $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$ Average Velocity over $[\mathrm{a}, \mathrm{b}]=\frac{f(b)-f(a)}{b-a}$ Total Distance $=\int_{a}^{b}\|v\| d t$ where a is initial time and b is final time.
The Trapezoidal Rule $\int_{a}^{b} f(x) d x \approx \frac{b-a}{2 n}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)\right.$	$\left.+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$	Integration by Parts $\int u d v=u v-\int v d u$

Simpson's Rule: Must use an even number of subdivisions!

Integral of a Natural Log

$\int_{a}^{b} f(x) d x \approx \frac{b-a}{3 n}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$

$$
\int \ln x d x=x \ln x-x+C
$$

Distance, Velocity, Acceleration with

Vectors

Velocity vector $=\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle$
Speed $=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$
Total Distance $=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
where a is initial time and b is final time.

Geometric Series:

$\sum_{n=1}^{\infty} a r^{n-1}=\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$

Lengths of Curves

Rectangular:

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

Parametric:

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d x}{d t}\right)^{2}} d t
$$

Polar:

$$
L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)} d \theta
$$

Average Value:

$f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

L'Hopital's Rule

If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0}$ or $\frac{\infty}{\infty}$, then
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$

Equation of Tangent Line at $x=a$

$$
y-f(a)=f^{\prime}(a)(x-a)
$$

Taylor Series:

If the function f is smooth at $\mathrm{x}=\mathrm{a}$, then it can be approximated by the nth degree polynomial
$f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}$
Maclaurin Series: A Taylor Series about $\mathrm{x}=0$ is called a Maclaurin Series
$e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\ldots$
$\cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\ldots$
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots$
$\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots$
$\ln (x+1)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots$

Lagrange Error

If $P_{n}(x)$ is the nth degree Taylor polynomial of $f(x)$ about c and $\left|f^{(n+1)}(t)\right| \leq M$ for all t between x and c ,
then
$|f(x)-P(x)| \leq \frac{M}{(n+1)!}|x-c|^{(n+1)}$

The Ratio Test:

The series $\sum_{k=0}^{\infty} a_{k}$ converges if

$$
\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|<1
$$

If limit equals 1 , you know nothing.

Polar Curves

For a polar curve $r(\theta)$, the area inside a "leaf" is

$$
\int_{\theta_{1}}^{\theta_{2}} \frac{1}{2}[r(\theta)]^{2} d \theta
$$

Where θ_{1} and θ_{2} are the "first" two times that $\mathrm{r}=0$.

Convert Polar to Parametric

Given $r(\theta)$

$$
\begin{aligned}
& x(\theta)=r \cdot \cos \theta \\
& y(\theta)=r \cdot \sin \theta
\end{aligned}
$$

Euler's Method

If given that $\frac{d y}{d x}=f(x, y)$ and that the solution passes through $\left(x_{0}, y_{0}\right)$ where $y\left(x_{0}\right)=y_{0}$

$$
y_{\text {new }}=y_{\text {old }}+d x \cdot \frac{d y}{d x}
$$

