Module 1

1. Give the domain and range of the function: See sketch

2. How would you translate the graph of $y=-x^{2}$ to produce the graph of $y=-x^{2}+7$
3. What is the transformation of the graph of $f(x)=x^{3}$ that yields $\mathrm{f}(\mathrm{x})=3(\mathrm{x}+2)^{3}-4$?
4. Which is an equation for the inverse of $y=3 x-4$?
5. State the domain, range as an inequality, interval and set notation. Also state the end behavior.

Module 2

6. Sketch the parent graph and translate it to obtain a
graph $y-5=|x+6|$
7. $4|x+7|+3=59$
8. $-5|x+1|+2=12$
9. \quad Solve $2|x+15|>8$

Module 3

10. Solve $5 x^{2}-4=-8$
11. Solve $x^{2}+64=0$
12. Simplify the expression. $(5+9 i)-(3-3 i)$
13. Simplify $(i \sqrt{5}+3)(i \sqrt{5}-3)$
14. Solve $x^{2}+2 x=-2$
15. Find the zeros of $x^{2}+8 x+10$
16. Solve $x^{2}+3 x-10=0$

Module 5
17. Identify the parent function for $(x-5)^{4}$ and describe what transformation of the parent function it represents.
18. Sketch: $y=-x(x+2)(x-3)(x+5)$
19. The graph of the polynomial function $p(x)$ is shown. What are the zeros of $p(x)$?
20. Write a polynomial equation that could result in the graph shown in \#19.

Module 6

21. Subtract. $\left(x^{3}-4 x+7\right)-\left(3 x^{3}-2 x^{2}+6 x-4\right)$
22. Multiply. $(2 x+3)\left(2 x^{2}-5 x+1\right)$
23. Expand. $(x+3 y)^{5} \quad$ Be able to find a term without expanding.
24. Completely factor $5 \mathrm{x}^{4}-80$.
25. When $x^{3}+64$ is written as a product of a binomial and a trinomial, what is the trinomial factor?
26. Is (x-3) a factor of $f(x)=4 x^{3}-12 x^{2}+2 x-5$?
27. What is the complete factorization of $10 \mathrm{x}^{4}-5 \mathrm{x}^{3}-30 \mathrm{x}^{2}$
28. Factor $x^{3}+3 x^{2}-x-3$
29. Divide. $\left(4 \mathrm{x}^{2}-9 \mathrm{x}+7\right) /(\mathrm{x}-3)$
30. Given $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2}-5 \mathrm{x}-12$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}+3$,

Find $_{a)} \frac{f(x)}{g(x)}$
b) $f(x) g(x)$
c) $g(f(x))$

Module 7

31. What are the possible rational roots of
$7 x^{3}-5 x^{2}+12 x-3$
32. a) What is the degree of the simplest polynomial with integer coefficients that has $\sqrt{3}, 3 \mathrm{i}$ and -5 i as zeros?
b) Find the polynomial.
33. Find all the zeros of $x^{3}-3 x^{2}+4 x-12$
34. Find all the zeros of $x^{4}+5 x^{3}+6 x^{2}-4 x-8$

Module 8
35. Identify the asymptotes, domain, and range of the
function. $\mathrm{f}(\mathrm{x})=\frac{1}{x-8}+9$
36. Identify all asymptotes of $\mathrm{f}(\mathrm{x})=\left(\mathrm{x}^{2}+4 \mathrm{x}+4\right) /\left(\mathrm{x}^{2}-4\right)$
37. Identify holes in the graph of $f(x)=\frac{x^{2}+7 x+10}{x+3}$
38.

Sketch $f(x)=\frac{2}{x-2}+6$

Module 9

39. Simplify $\frac{x+5}{x^{2} 9}+\frac{3 x}{x^{2}-8}$
40. Simplify

Simplify $\frac{1}{x^{2}+4 x} \quad 5 \quad \frac{1}{x^{2}} 4 x+3$
41. Simplify $\frac{x^{2}-4}{x^{2}+6 x+8} \cdot \frac{x^{2}}{x^{2}-2 x}$
42. Simplify $\frac{x^{2} \quad 9 x+14}{x^{2}+9 x+14} \quad \frac{x^{2} \quad 49}{x^{2} \quad 4}$
43.
Simplify a) i^{323}
b) $\frac{3}{2+i}$
c) $\frac{2-3 i}{6-5 i}$
44.

Simplify a) $\frac{10!7!}{5!11!}$
b) $\frac{n!}{(n-2)!}$

