Algebra 2 Final Review Study Guide

	Module 1
1.	Give the domain and range of the function: See sketch
	1
	\leftarrow
	*
2.	How would you translate the graph of $y = -x^2$ to
	produce the graph of $y = -x^2 + 7$
з.	What is the transformation of the graph of $f(x) = x^3$
	that yields $f(x) = 3(x + 2)^3 - 4$?
4.	Which is an equation for the inverse of $y = 3x - 4$?
5.	State the domain, range as an inequality, interval and
	set notation. Also state the end behavior.
	2
	× ×
_	Module 2
6.	Sketch the parent graph and translate it to obtain a
_	graph $y - 5 = x + 6 $
7.	4 x+7 +3 = 59 -5 x+1 +2 =12
8. 0	-5 x+1 + 2 - 12 Solve $2 x + 15 > 8$
9.	
	Module 3
10.	Solve $5x^2 - 4 = -8$
11.	Solve $x^2 + 64 = 0$
12.	Simplify the expression. $(5+9i) - (3-3i)$
13.	Simplify $(i\sqrt{5} + 3)(i\sqrt{5} - 3)$
14.	Solve $x^2 + 2x = -2$
15.	Find the zeros of $x^2 + 8x + 10$
16.	Solve $x^2 + 3x - 10 = 0$
	Module 5
17.	Identify the parent function for $(x - 5)^4$ and describe
	what transformation of the parent function it
	represents.
18.	Sketch: $y = -x(x+2)(x-3)(x+5)$
19.	The graph of the polynomial function $p(x)$ is shown.
1 1	
1	
	What are the zeros of $p(x)$?

20.	
	graph shown in #19.
	Module 6
21.	Subtract. $(x^3 - 4x + 7) - (3x^3 - 2x^2 + 6x - 4)$
22.	Multiply. $(2x+3)(2x^2-5x+1)$
23.	Expand. $(x + 3y)^5$ Be able to find a term without
	expanding.
24.	Completely factor $5x^4 - 80$.
25.	When $x^3 + 64$ is written as a product of a binomial and a trinomial, what is the trinomial factor?
26.	Is (x-3) a factor of $f(x) = 4x^3 - 12x^2 + 2x - 5$?
27.	What is the complete factorization of $\frac{12x}{12x} + \frac{12x}{2x} = \frac{1}{2x}$
27.	$10x^4 - 5x^3 - 30x^2$
28.	Factor $x^3 + 3x^2 - x - 3$
29.	Divide. $(4x^2 - 9x + 7)/(x - 3)$
<u>30.</u>	Given $f(x) = 2x^2 - 5x - 12$ and $g(x) = 2x + 3$,
	Find _a) $\frac{f(x)}{g(x)}$ b) $f(x)g(x)$ c) $g(f(x))$
	Module 7
31.	What are the possible rational roots of $7x^3 - 5x^2 + 12x - 3$
32.	a) What is the degree of the simplest polynomial with
	integer coefficients that has $\sqrt{3}$, 3i and -5i as zeros?
	b) Find the polynomial.
33.	Find all the zeros of $x^3 - 3x^2 + 4x - 12$
-	Find all the zeros of $x^4 - 5x^3 + 4x - 12$ Find all the zeros of $x^4 + 5x^3 + 6x^2 - 4x - 8$
34.	
25	Module 8
35.	Identify the asymptotes, domain, and range of the
	function. $f(x) = \frac{1}{x-8} + 9$
36.	Identify all asymptotes of $f(x) = (x^2 + 4x + 4)/(x^2 - 4)$
30. 37.	$x^2 + 7x + 10$
	Identify holes in the graph of $f(x) = \frac{x^2 + 7x + 10}{x + 3}$
38.	Sketch $f(x) = \frac{2}{x-2} + 6$
	Module 9
39.	
55.	Simplify $\frac{x+3}{x^2-9} + \frac{-3x-8}{x^2-9}$
40.	x - y - x - y
40.	Simplify $\frac{1}{2} - \frac{1}{2}$
	$x^2 + 4x - 5$ $x^2 - 4x + 3$
41.	Simplify $\frac{x+5}{x^2-9} + \frac{-3x-8}{x^2-9}$ Simplify $\frac{1}{x^2+4x-5} - \frac{1}{x^2-4x+3}$ Simplify $\frac{x^2-4}{x^2+6x+8} \cdot \frac{x^2}{x^2-2x}$
42.	$r^2 - 9r + 14$ $r^2 - 49$
	Simplify $\frac{x^2 - 9x + 14}{x^2 + 9x + 14} = \frac{x^2 - 49}{x^2 - 4}$
43.	
- 3.	Simplify a) i^{323} b) $\frac{3}{2+i}$ c) $\frac{2-3i}{6-5i}$
	2+i $6-5i$
44.	Simplify a) $\frac{10!7!}{5!11!}$ b) $\frac{n!}{(n-2)!}$
1	$\frac{5!11!}{5!11!}$ $\frac{5!}{(n-2)!}$
L	× /