$\qquad$

Identify the vertex, axis of symmetry, direction of opening, min/max value, $y$-intercept, and x-intercepts of each.
48) $f(x)=(x-3)^{2}-25$

Describe the transformation of $\boldsymbol{f}(x)$ from $g(x)=x^{2}$
49) $f(x)=\frac{1}{2}(x+2)^{2}+4$

Find the inverse of each function.
50) $g(x)=\frac{2-\sqrt[3]{4 x}}{2}$
51) $g(x)=-\frac{5}{6} x+\frac{5}{2}$
52) $y=4^{x}-10$
53) $y=\log _{2}(x+1)$

Use the information provided to write the vertex form equation of each parabola. Then find he vertex.
54) $f(x)=-2 x^{2}+16 x-39$
55) $f(x)=x^{2}+4 x+12$

Divide.
56) $\left(x^{4}-8 x^{3}-25 x^{2}+52 x-12\right) \div(x-10)$
57) $\left(6 x^{4}+8 x^{3}-62 x^{2}+24 x-1\right) \div(6 x-4)$

Evaluate each expression.
58) $\log _{8} \frac{1}{2}$
59) $\log _{4} 16$

Use a calculator to approximate each to the nearest thousandth.
60) $\log _{2} 25$
61) $\log _{7} 27$

Condense each expression to a single logarithm.
62) $6 \log _{5} 3+2 \log _{5} 8$
63) $2 \log _{6} 8-12 \log _{6} 11$

Expand each logarithm.
64) $\log _{2}\left(c^{6} \sqrt{a}\right)$
65) $\log _{7}\left(x \cdot y \cdot z^{5}\right)$

Identify the domain and range of each. Then sketch the graph.
66) $f(x)=\log _{2}(x-1)+1$

67) $f(x)=\log _{2}(x-1)-4$


## Solve each equation.

68) $\log _{5} x-\log _{5}(x-2)=1$
69) $\log _{5} 9+\log _{5} 5 x^{2}=1$

Solve each equation. Round your answers to the nearest ten-thousandth.
70) $-5 e^{x-10}=-28.7$
72) Find the time required for an investment of $\$ 2000$ to double if the interest rate of $9.5 \%$ is compounded continuously.

Find the exact value of all six trigonometric functions.
74) $\theta=\frac{7 \pi}{6}$
76) simplify: $\cos ^{2} x \sin ^{2} x-\cos ^{2} x$
78) $\tan ^{2} x\left(\sec ^{2} x-1\right)$

## Evaluate each arithmetic series described.

80) $\sum_{k=1}^{45}(10 k-5)$
81) To find the height of a pole, a surveyor moves 100 feet away from the base of the pole and then, from an eye-level height of 5.5 feet, measures the angle of elevation to the top of the pole to be $47^{\circ}$. Find the height of the pole to the nearest foot.
82) An angle whose endpoint lies at (3, -4)
83) $e^{x-8}+5=14$
84) The needle of the scale in the bulk food section of a supermarket is 25 cm long. Find the distance the tip of the needle travels when it rotates $92^{\circ}$.
85) simplify: $\tan ^{2} x-\tan ^{2} x \sin ^{2} x$
86) $\frac{1-\sec x}{\tan x}-\frac{\tan x}{1-\sec x}$
87) $\sum_{k=1}^{6}(2 k-7)$
88) A 20-foot ladder makes an angle of $52^{\circ}$ with the ground as it leans against a barn. How far up the barn does the ladder reach?
89) $f(x)=\frac{1}{2} \cdot\left(\frac{1}{6}\right)^{x}+1$
90) $f(x)=5 \cdot 2^{x}-1$



Solve each triangle. Round answers to the nearest tenth.
86)

88) A pole 50 feet tall is situated at the bottom of a hill that slopes up at an angle of $21.9^{\circ}$. A guy wire from the top of the pole to the hillside forms an angle of $37^{\circ}$ with the top of the pole. Find the distance from the base of the pole to the guy wire's point of attachment.
87)

89) A group of 80 people attend a ball game. There were four times as many children as adults in the group. Set up a system of equations that represents the numbers of adults and children that attended the game and solve the system to find the number of children that were in the group.

Given the first term and the common difference of an arithmetic sequence find the term named in the problem, the explicit formula, and the recursive formula.
90) $a_{1}=-22, d=9$

Find $a_{26}$

Evaluate each arithmetic series described.
92) $a_{1}=14, a_{n}=26, n=7$
93) $a_{1}=19, d=8, n=40$
94) $31+40+49+58 \ldots, n=14$
95) $0+10+20+30 \ldots, n=16$

## Evaluate each geometric series described.

96) $\sum_{k=1}^{8}-2 \cdot 4^{k-1}$

Find the common ratio, the 8th term, the explicit formula, and the recursive formula.
98) $3,15,75,375, \ldots$
100) A woman made $\$ 20,000$ during the first year of her new job at city hall. Each year she received a $10 \%$ raise. Find her total earnings during the first seven years on the job.

Solve each equation for $0 \leq \theta<360$.
101) $3+\tan \theta=2$

Solve each equation for $0 \leq \theta<2 \pi$.
103) $2 \sqrt{3}=-4 \cos \theta$
105) State all three pythagorean identies

Sketch two cycles of the graph of the functions.
107) Sketch two cycles of the graph of the function $y=3 \cos \theta-1$
97) $a_{1}=-1, a_{n}=128, r=-2$
99) In 1988, the average cost of a ticket on a privately-owned airline was $\$ 110$. This amount has increased by approximately $\$ 55$ yearly. How much should you expect to pay for a ticket on this airline in the year 2003?
102) $0=4 \tan \theta$
104) $-4+\tan \theta=-4$
106) State all reciprocal identities.
108) $y=-2+\frac{1}{2} \cdot \sin 4 \theta$
$\qquad$
$\qquad$
Identify the vertex, axis of symmetry, direction of opening, min/max value, $y$-intercept, and x-intercepts of each.
48) $f(x)=(x-3)^{2}-25$ Vertex: $(3,-25)$

Axis of Sym.: $x=3$
Opens: Up
Min value $=-25$
y-int: - 16
x-int: 8 and -2
Find the inverse of each function.
50) $g(x)=\frac{2-\sqrt[3]{4 x}}{2} g^{-1}(x)=-2(x-1)^{3}$
51) $g(x)=-\frac{5}{6} x+\frac{5}{2} g^{-1}(x)=3-\frac{6}{5} x$
52) $y=4^{x}-10 \quad y=\log _{4}(x+10)$
53) $y=\log _{2}(x+1) \quad y=2^{x}-1$

Use the information provided to write the vertex form equation of each parabola. Then find he vertex.
54) $f(x)=-2 x^{2}+16 x-39 \begin{aligned} & f(x)=-2(x-4)^{2}-7 \\ & (4,-7)\end{aligned}$

Divide.
56) $\left(x^{4}-8 x^{3}-25 x^{2}+52 x-12\right) \div(x-10)$

$$
x^{3}+2 x^{2}-5 x+2+\frac{8}{x-10}
$$

Evaluate each expression.
58) $\log _{8} \frac{1}{2}-\frac{1}{3}$
59) $\log _{4} 162$

Use a calculator to approximate each to the nearest thousandth.
60) $\log _{2} 254.644$

Condense each expression to a single logarithm.
62) $6 \log _{5} 3+2 \log _{5} 8 \log _{5}\left(8^{2} \cdot 3^{6}\right)$
63) $2 \log _{6} 8-12 \log _{6} 11 \log _{6} \frac{8^{2}}{11^{12}}$

## Expand each logarithm.

64) $\log _{2}\left(c^{6} \sqrt{a}\right) 6 \log _{2} c+\frac{\log _{2} a}{2}$
65) $\log _{7}\left(x \cdot y \cdot z^{5}\right) \log _{7} x+\log _{7} y+5 \log _{7} z$

Identify the domain and range of each. Then sketch the graph.
66) $f(x)=\log _{2}(x-1)+1$


Domain: $x>1$ Range: All reals

## Solve each equation.

68) $\log _{5} x-\log _{5}(x-2)=1\left\{\frac{5}{2}\right\}$
69) $\log _{5} 9+\log _{5} 5 x^{2}=1 \quad\left\{\frac{1}{3},-\frac{1}{3}\right\}$
70) $f(x)=\log _{2}(x-1)-4$


Range: All reals

Solve each equation. Round your answers to the nearest ten-thousandth.
70) $-5 e^{x-10}=-28.7 \quad 11.7475$
72) Find the time required for an investment of $\$ 2000$ to double if the interest rate of $9.5 \%$ is compounded continuously.

Find the exact value of all six trigonometric functions.
74) $\theta=\frac{7 \pi}{6} \quad \sin \theta=-\frac{1}{2}, \quad \csc \theta=-2$

$$
\begin{aligned}
& \cos \theta=-\frac{\sqrt{3}}{2}, \quad \sec \theta=-\frac{2 \sqrt{3}}{3} \\
& \tan \theta=\frac{\sqrt{3}}{3}, \quad \cot \theta=\sqrt{3}
\end{aligned}
$$

76) simplify: $\cos ^{2} x \sin ^{2} x-\cos ^{2} x-\cos ^{4} x$
77) $\tan ^{2} x\left(\sec ^{2} x-1\right) \tan ^{4} x$

Evaluate each arithmetic series described.
80) $\sum_{k=1}^{45}(10 k-5) 10125$
81) $\sum_{k=1}^{6}(2 k-7) 0$
82) To find the height of a pole, a surveyor moves 100 feet away from the base of the pole and then, from an eye-level height of 5.5 feet, measures the angle of elevation to the top of the pole to be $47^{\circ}$. Find the height of the pole to the nearest foot.
71) $e^{x-8}+5=14 \quad 10.1972$
7.30 yea3) The needle of the scale in the bulk food
75) An angle whose endpoint lies at $(3,-4)$
$\sin \theta=-\frac{4}{5}, \quad \csc \theta=-\frac{5}{4}$
$\cos \theta=\frac{3}{5}, \quad \sec \theta=\frac{5}{3}$
$\tan \theta=-\frac{4}{3}, \quad \cot \theta=-\frac{3}{4}$
77) simplify: $\tan ^{2} x-\tan ^{2} x \sin ^{2} x \sin ^{2} x$
79) $\frac{1-\sec x}{\tan x}-\frac{\tan x}{1-\sec x} 2 \cot x$

113 ft .83 ) A 20-foot ladder makes an angle of $52^{\circ}$ with the ground as it leans against a barn. How far up the barn does the ladder reach?
84) $f(x)=\frac{1}{2} \cdot\left(\frac{1}{6}\right)^{x}+1$
85) $f(x)=5 \cdot 2^{x}-1$



Solve each triangle. Round answers to the nearest tenth.
86)

88) A pole 50 feet tall is situated at the bottom of a hill that slopes up at an angle of $21.9^{\circ}$. A guy wire from the top of the pole to the hillside forms an angle of $37^{\circ}$ with the top of the pole. Find the distance from the base of the pole to the guy wire's point of attachment.
31.2 ft
87)

89) A group of 80 people attend a ball game. There were four times as many children as adults in the group. Set up a system of equations that represents the numbers of adults and children that attended the game and solve the system to find the number of children that were in the group.
64 children

Given the first term and the common difference of an arithmetic sequence find the term named in the problem, the explicit formula, and the recursive formula.
90) $a_{1}=-22, d=9 \quad a_{26}=203$

Find $a_{26}$

$$
\begin{aligned}
& \text { Explicit: } a_{n}=-31+9 n \\
& \text { Recursive: } a_{n}=a_{n-1}+9 \\
& \quad . \quad a_{i}=-22
\end{aligned}
$$

Evaluate each arithmetic series described.
91) $a_{1}=-35, d=-10 \quad a_{29}=-315$

Find $a_{29}$
Explicit: $a_{n}=-25-10 n$
Recursive: $a_{n}=a_{n-1}-10$

$$
a_{1}=-35
$$

92) $a_{1}=14, a_{n}=26, n=7140$
93) $a_{1}=19, d=8, n=407000$
94) $0+10+20+30 \ldots, n=16$

## Evaluate each geometric series described.

96) $\sum_{k=1}^{8}-2 \cdot 4^{k-1}-43690$
97) $a_{1}=-1, a_{n}=128, r=-285$

Find the common ratio, the 8th term, the explicit formula, and the recursive formula.
98) $3,15,75,375, \ldots$ Common Ratio: $r=5$

$$
a_{8}=234375
$$

Explicit: $a_{n}=3 \cdot 5^{n-1}$
Recursive: $a_{n}=a_{n-1} \cdot 5$

$$
a_{1}=3
$$

99) In 1988, the average cost of a ticket on a privately-owned airline was $\$ 110$. This amount has increased by approximately $\$ 55$ yearly. How much should you expect to pay for a ticket on this airline in the year 2003?
100) A woman made $\$ 20,000$ during the first year $\$ 189,743.42$ of her new job at city hall. Each year she received a $10 \%$ raise. Find her total earnings during the first seven years on the job.

Solve each equation for $0 \leq \theta<360$.
101) $3+\tan \theta=2 \quad\{135,315\}$

Solve each equation for $0 \leq \theta<2 \pi$.
103) $2 \sqrt{3}=-4 \cos \theta\left\{\frac{5 \pi}{6}, \frac{7 \pi}{6}\right\}$
105) State all three pythagorean identies
$\sin ^{2} x+\cos ^{2} x=1$
$\sec ^{2} x=\tan ^{2} x+1$
$\csc ^{2} x=\cot ^{2} x+1$
102) $0=4 \tan \theta\{0,180\}$
104) $-4+\tan \theta=-4 \quad\{0, \pi\}$
106) State all reciprocal identities.
$\sin \theta=\frac{1}{\csc \theta}$
$\cos \theta=\frac{1}{\sec \theta}$
$\tan \theta=\frac{1}{\cot \theta}$

## Sketch two cycles of the graph of the functions.

107) Sketch two cycles of the graph of the function
$y=3 \cos \theta-1$

108) $y=-2+\frac{1}{2} \cdot \sin 4 \theta$

