(-1,2)

Figure 1

Figure 2

Do the following problems on binder paper showing all your work.

These problems are similar to the final exam, they cover the same material as the final so STUDY!

- What is the transformation of the graph of $y = x^2$ that yields $y = -3(x-2)^2 + 1$? 1)
- 2) Give the domain and range of the function shown in **Figure 1**.
- Given $f(x) = 2x^2 x 3$ and g(x) = x + 1, find $\frac{f(x)}{g(x)}$. 3)

- Divide $5x^2 17x + 6 \div x 3$. 5)
- Factor $25x^2 16y^2$. 6)
- Simplify $\frac{1}{3x^2+2x-1} + \frac{2}{x^2-x-2}$. 7)

- Simplify $\frac{2x^2-x-3}{4x^2-9} \div \frac{x^2-9x+14}{4x^2-2x-6}$. 9)
- Identify all asymptotes of $f(x) = \frac{x^2 2x + 4}{x^2 1}$. 10)
- 11)
- 12)

- Write a polynomial function that could have generated the graph shown in **Figure 2**. 13)
- What is the degree of the simplest polynomial with integer coefficients and 3 and $\sqrt{3}$ as zeros? 14)
- Identify the asymptotes, domain, and range of the function $g(x) = \frac{2}{x+4} + 1$. 15)
- Find the inverse of $f(x) = 3(x-4)^2 + 1$. 16)
- Solve $\sqrt[3]{4x^2 4x + 1} \sqrt[3]{x} = 0$. 17)
- Graph $f(x) = \sqrt[3]{x-6} + 2$? 18)
- Find the inverse of $y = 3\sqrt{x-3} + 3$. 19)
- Solve $(3x + 28)^{\frac{1}{2}} = x$. 20)
- Simplify $\sqrt[4]{48x^5y^6}$. 21)
- Simplify $\frac{3}{2}x^{\frac{2}{3}}y^{\frac{1}{2}} \cdot 4x^{-\frac{1}{3}}y^{\frac{3}{2}}$. 22)
- State the domain and range for the function $h(x) = e^{x-7} 2$. 23)

Figure 3

An ancient Greek theater had 30 seats in the front row. Each row behind had 2 more seats. Write 24) a recursive rule for the number of seats a_n in row n. How many seats are in the 7th row?

- Write an explicit rule for the n^{th} term of the arithmetic sequence -7, -4, -1, 2, ...25)
- Write the function whose graph is shown in **Figure 4**. 26)
- Find the exact value of $\log_5 500 \log_5 4$. 27)
- 28) Find the exact value of $\log_3 27 + \log_3 9$.
- Find the exact value of log₂ 128. 29)
- Solve $\log_4(2x 1) + 3 = 5$. 30)
- Solve $3 \ln e^{2x+4} = e^{\ln 9}$. 31)
- Evaluate $\log_4 \frac{1}{64}$. 32)
- Solve $27^{x+2} = 9$. 33)

- Describe the transformations from the parent function for $f(x) = \frac{1}{2}\log_3(x-4) + 6$. 37)
- 38) Solve $17^x = 34$.
- 39) Evaluate log₄ 8.
- Solve the triangle in figure 5 40)

- Find a positive and negative coterminal angle to 210° and $-\frac{2\pi}{5}$ 42)
- Find the exact value of $\cos \frac{37\pi}{\Lambda}$. 43)
- 44) Find the exact value Tan -60
- Draw the angle $-\frac{7\pi}{3}$ 45)
- Prove the following: 46)

$$(A)\frac{\cot x}{\csc x} = \cos x$$

$$(B) \sin^2 x (1 + \cot^2 x) = 1$$

$$(C)\frac{\sec x}{\sin x} - \frac{\sin x}{\cos x} = \cot x$$

(A) $\frac{\cot x}{\csc x} = \cos x$ (B) $\sin^2 x (1 + \cot^2 x) = 1$ (C) $\frac{\sec x}{\sin x} - \frac{\sin x}{\cos x} = \cot x$ Solve each equation for 0 < x < 36047)

(A)
$$-4\sqrt{2} = -8\cos x$$
 (B) $5 + \sin(x + 225) = \frac{10 - \sqrt{2}}{2}$

48) Graph the following:

(A)
$$y = -2\cos(2x + \pi) + 1$$
 (B) $y = 2\sin(3(x - 2\pi)) + 3$ (C) $y = \tan(\frac{1}{2}(x + 4\pi)) - 1$ (D) $x^2 + y^2 - 8x + 2y + 13 = 0$ (E) $25x^2 + 9y^2 - 100x + 36y - 89 = 0$

(D)
$$x^2 + y^2 - 8x + 2y + 13 = 0$$
 (E) $25x^2 + 9y^2 - 100x + 36y - 89 = 0$

(F)
$$4x^2 - y^2 - 24x - 2y + 19 = 0$$

Figure 4