The graph of a Quadratic Function is called The Parabola.
We will continue from the notes from last week:

Parts of the Parabola

Finding the axis of Symmetry and the y-intercept

Example

- Determine the zero(s) for each of the following and use them to find the axis of symmetry and the y-intercept.

$$
y=-(x-2)(x-8)
$$

Set $y=0$ since we are looking for the x -
intercepts.
$0=-(x-2)(x-8)$
$0=(x-2)(x-8)$ multiplied both sides by -1
Either $x-2=0$ or $x-8=0$
$x=2$ or $x=8$
From last week, we know the zeros are 2 and 8 .
Once again to find the vertex, To Find the y-intercept, let all x's equal to zero and calculate for y
$\mathrm{h}=(2+8) / 2 \Leftrightarrow$ find the midpoint of
$h=5 \quad$ the zeros (x -value)

$$
\begin{array}{rlrl}
\mathrm{k} & =-(5-2)(5-8) & \text { find the optimal } \\
& =9 & & \text { value (y-value) }
\end{array}
$$

Therefore the vertex is $(5,9)$.
The axis of symmetry is given by $\mathrm{x}=\mathrm{h}$,
In this problem the h is equal to 5 , so the axis of symmetry is $x=5$.
$y=-(x-2)(x-8)$
$y=-(0-2)(0-8)$
This results in the following:
$y=-(-2)(-8)$
$y=-16$
This is the y-intercept,
where the graph crosses the y-axis

So now we know how to find our x-intercepts, vertex, axis of symmetry, and our y-intercept. By plotting these points, we can graph a very precise parabola!

Graphing a more precise parabola:

First find the x-intercepts. Once again, these are the zeroes of the factors.
Example: $\quad y=x^{2}-4$
$x^{2}-4=0$
$(x+2)(x-2)=0$
$x=-2$ and $x=2 \quad$ These are the 2 x-intercepts

Second find the vertex, what we did above.

$$
h=\frac{2+(-2)}{2}=0 \quad \begin{array}{ll}
y=x^{2}-4 \\
& k=y=0^{2}-4=-4
\end{array}
$$

so the vertex is $(0,-4)$
Step 3 Knowing our vertex, now we know our axis of symmetry, which in this case is $x=0$, represented with the dashed red line.

Step 4 To find the y-intercept, you can use either the original equation or the factored form, and let all x 's equal to zero:

$$
\begin{array}{lll}
y=x^{2}-4 & \text { Or } & (x+2)(x-2)=y \\
y=0^{2}-4 & & (0+2)(0-2)=y \\
y=-4 & y=-4
\end{array}
$$

By plotting these points, we get a much more precise parabola.

Parts of a Parabola:

1. Describe what the axis of symmetry is?
2. The axis of symmetry is the same as what component of the vertex?
3. How do you find the y-intercept of a parabolic function?

Determine the axis of symmetry and the y-intercept for each.

1. $y=(x+4)(x+12)$
2. $y=8(x-5)(x+9)$
3. $y=(x-7)(x-1)$
4. $y=-0.5(x-1)(x+7)$

Connecting Graphs with their y-intercepts:

Match each equation to its graph.

Graph A

Graph C

Graph D

1) y-intercept of 4
2) y-intercept of -6
3) y-intercept of 6
4) y-intercept of -4

Graph the following parabolas. Make sure that you draw the axis of symmetry and calculate and plot the yintercept. (please do the calculations on a separate sheet of paper)

1. $f(x)=(x+2)(x-4)$
2. $f(x)=-(x+1)(x+3)$
3. $f(x)=-(x+2)(x+2)$

Summary Assignment Week 4

Determine the axis of symmetry and the y-intercept for each parabola.

1. $y=(x+1)(x+3)$	2.

Sketch a precise graph for each parabola. Please show all the important features on your sketched graph.
5. $y=(x+1)(x+5)$

6. $y=-(x+1)(x-1)$

