The graph of a Quadratic Function is called The Parabola.

Parts of the Parabola

Finding the Vertex from Factored Form

 Example Determine the zero(s) for each of the following and use them to find the coordinates of the vertex. 	
y=-(x-2)(x-8)	
Find the zeros Method 1: Notice that this is already in factored form. The zeros are opposite of the signs of the factors in factored form. The zero's are 2 and 8. To vertex is a point and has a x and y of The x component we notate as h and the	Method 2: Set y=0 since we are looking for the x- intercepts. 0 = -(x-2) (x-8) 0 = (x-2) (x-8) multiplied both sides by -1 Either x-2 = 0 or $x-8 = 0$ x = 2 or $x = 8Therefore, zeros are 2 and 8.component.he y component we notate as k.$
(x, y) becomes (h, k) when we talk about the vertex.	
To find the vertex, h = (2+8)/2 find the midpoint of h = 5 the zeros (x-value)	
k = -(5-2)(5-8) find the optimal = 9 value (y-value)	
Therefore the vertex is (5,9).	

Last Week we found the solutions of factors or factored form of a quadratic.

We can use the solutions to find the vertex shown above. In addition, the solutions are your x-intercepts on the graph labeled in the above diagram.

Graphing from Factored Form:

First find the x-intercepts. These are the zeroes of the factors. In other words what makes each factor equal zero.

Example: $y = x^2 - 4$

$$x^{2}-4=0$$

(x+2)(x-2)=0
x=-2 and x=2 These are the 2 x-intercepts

Second find the vertex, what we did above.

$$h = \frac{2 + (-2)}{2} = 0$$
 $y = x^{2}$
 $k = y = x^{2}$

$$y = x^{2} - 4$$

 $k = y = 0^{2} - 4 = -4$

so the vertex is (0, -4)

Step 3 would be to connect the 3 dots in a parabolic curve as shown above. That is a basic graph of a parabola.

Parts of a Parabola:

- 1. Where are the x-intercepts of any graph located?
- 2. What is the lowest or highest point on a parabola called?
- 3. Can you think of a time where the graph of a parabola will NOT have two x-intercepts?
- 4. Algebraically the x-intercepts are what of a quadratic function?

Determine the vertex of each parabola.

- 1. y = (x + 4)(x + 12)2. y = 8(x 5)(x + 9)3. y = (x 7)(x 1)4. y = -0.5(x 1)(x + 7)
- 5. y = 2(x 2)(x 4) 6. y = 3x(x 2)

Graphing Quadratic Functions from their factored form:

Match each equation to its graph.

Graph the following parabolas. (please do the calculations on a separate sheet of paper)

Summary Assignment Week 3

Determine the vertex for each parabola.

1.
$$y = (x+1)(x+3)$$

2. $y = (x+3)(x-5)$
3. $y = (x-4)^2$
4. $y = -(x-4)(x+2)$

Graph each parabola, having found the vertex for them in #'s 1-4.

