The graph of a Quadratic Function is called The Parabola.
Parts of the Parabola

Finding the Vertex from Factored Form

Example

- Determine the zero(s) for each of the following and use them to find the coordinates of the vertex.

$$
y=-(x-2)(x-8)
$$

Find the zeros
Method 1:
Notice that this is already in factored form. The zeros are opposite of the signs of the factors in factored form.
The zero's are 2 and 8.

Method 2:

Set $y=0$ since we are looking for the x intercepts.
$0=-(x-2)(x-8)$
$0=(x-2)(x-8)$ multiplied both sides by -1 Either $x-2=0$ or $x-8=0$

$$
x=2 \quad \text { or } \quad x=8
$$

Therefore, zeros are 2 and 8.

To vertex is a point and has a x and y component.
The x component we notate as h and the y component we notate as k . (x, y) becomes (h, k) when we talk about the vertex.

To find the vertex,

$$
\begin{array}{rlr}
\mathrm{h}=(2+8) / 2 & \text { find the midpoint of } \\
\mathrm{h}=5 & & \text { the zeros (x-value) }
\end{array}
$$

Therefore the vertex is $(5,9)$.

Last Week we found the solutions of factors or factored form of a quadratic.
We can use the solutions to find the vertex shown above. In addition, the solutions are your x-intercepts on the graph labeled in the above diagram.

Graphing from Factored Form:
First find the x-intercepts. These are the zeroes of the factors. In other words what makes each factor equal zero.
Example: $\quad y=x^{2}-4$
$x^{2}-4=0$
$(x+2)(x-2)=0$
$x=-2$ and $x=2 \quad$ These are the 2 x-intercepts

Second find the vertex, what we did above.

$$
h=\frac{2+(-2)}{2}=0 \quad \begin{array}{ll}
& y=x^{2}-4 \\
& k=y=0^{2}-4=-4
\end{array}
$$

so the vertex is $(0,-4)$
Step 3 would be to connect the 3 dots in a parabolic curve as shown above. That is a basic graph of a parabola.

Parts of a Parabola:

1. Where are the x-intercepts of any graph located?
2. What is the lowest or highest point on a parabola called?
3. Can you think of a time where the graph of a parabola will NOT have two x-intercepts?
4. Algebraically the x-intercepts are what of a quadratic function?

Determine the vertex of each parabola.

1. $y=(x+4)(x+12)$
2. $y=8(x-5)(x+9)$
3. $y=(x-7)(x-1)$
4. $y=-0.5(x-1)(x+7)$
5. $y=2(x-2)(x-4)$
6. $y=3 x(x-2)$

Graphing Quadratic Functions from their factored form:

Match each equation to its graph.

Graph A

Graph B

Graph C

Graph D

1) $y=-(x+4)(x-1)$
2) $y=(x+2)(x-3)$
3) $y=(x+2)(x-3)$
4) $y=-(x+2)(x-3)$

Graph the following parabolas. (please do the calculations on a separate sheet of paper)

1) $f(x)=(x-1)(x+3)$
2) $f(x)=(x+5)(x+1)$
3) $f(x)=-(x-4)(x-2)$

Determine the vertex for each parabola.

| 1. $y=(x+1)(x+3)$ | 2. | $y=(x+3)(x-5)$ |
| :--- | :--- | :--- | :--- |
| 3. $y=(x-4)^{2}$ | 4. $y=-(x-4)(x+2)$ | |

Graph each parabola, having found the vertex for them in \#'s 1-4.

