More on Factoring and zero product property

Two Different Approaches to Factoring Quadratics

Factoring Quadratic Trinomials Notes

There are several ways we can factor a polynomial of the form $ax^2 + bx + c$, $a \neq 0$.

Example 1: Factor $x^2 + 5x + 6$

Step 1: List the factors of 6:

Step 2: The value of c, 6, is positive. Which factors of 6 add up to 5?

Step 3: The signs of the factors will be positive because b is positive.

Factored version: (x + 3)(x + 2)

Step 4: CHECK YOUR WORK. Multiply your answer and check it is what we started with.

Example 2: Factor $x^2 - 5x - 6$

Step 1: List the factors of 6:

Step 2: The value of c, -6, is negative. Which factors of 6 when subtracted give 5? Which factor should be negative and which should be positive?

Step 3: The signs of the 6 should be negative since b is negative 5

Factored version: (x - 6)(x + 1)

Method 3: Diamond Method

This method works for any value of a.

Steps:

- In the top, put the product of a and c.
- In the bottom, put the value of b.
- The left and the right locations are the numbers that when multiplied, give us ac, and when added, give us b, that is ef = ac and e + f = b.
- Put a fraction bar over the left and right values, and put a on top. Reduce.
- The top part of the fraction bar is the x-coefficient of the binomial factor, and the bottom part is the constant part.

Quadratic equations in factored form can be solved by using the Zero Product Property which states: If the product of two quantities equals zero, at least one of the quantities must equal zero.

If $(x)(y) = 0$, then	If $(x+3)(x-2) = 0$, then			
x = 0 or $y = 0$	x + 3 = 0 or $x - 2 = 0$			
You can use the Zero Product Pro	perty to solve any quadratic equation written in factored form, such as $(a + b)(a - b) = 0$.			
Examples: Solve the quadratic equations by factoring				
1) Solve $y = x^2 + 4x - 5$	We substitute zero for y because ZEROES are the SOLUTIONS of quadratic equations.			
$0 = x^2 + 4x - 5$	Now we factor the quadratic (see previous lessons) to find the ZEROES.			
0 = (x + 5)(x - 1)	Find the zeros of $(x + 5)(x - 1) = 0$ by setting each factor equal to 0.			
x + 5 = 0 or $x - 1 = 0$	Set each factor equal to 0.			
x = -5 or x = 1	Solve each equation for x.			
2) Solve $(x-7)(x+2) = 0$.				
x - 7 = 0 or $x + 2 = 0$	Set each factor equal to 0.			
x = 7 or $x = -2$	Solve each equation for x.			

Using Zero Product Property Example (Given Factored Form):

Problem:	Find the solutions for:	(x+2)(x-5)=0	
What to do:	Set each factor to zero	and then solve.	
Work:		x+2 = 0	x - 5 = 0
		X = -2	x = 5

Using Zero Product Property Example (Given in Standard Form and not factored):

Problem:	Find the solutions for: $x^2 - 4x - 12 =$	= 0	
What to do:	Fire Factor, then Set each factor to ze	ero, and then solve.	
Work:	(x 6)(x+2)=0		
	x+2=0	x - 6 = 0	
	x = -2	x = 5	

Factoring Trinomials (a = 1)

Factor each completely.

1) $b^2 + 8b + 7$ 2) $n^2 - 11n + 10$ 3) $m^2 + m - 90$ 4) $n^2 + 4n - 12$ 5) $n^2 - 10n + 9$ 6) $b^2 + 16b + 64$ 7) $m^2 + 2m - 24$ 8) $x^2 - 4x + 24$

Solve each equation by using the zero product property.

1)
$$(n-5)(n+3) = 0$$

2) $(x-3)(x+1) = 0$

3)
$$(a+3)(a+8) = 0$$

4) $m(m+7) = 0$

5)
$$(3x-8)(x-3) = 0$$

6) $(3p+1)(8p-3) = 0$

7)
$$(a-7)(a-3) = 0$$

8) $(4v+5)(v+7) = 0$

9) 3p(5p-1) = 0 10) $(v+8)^2 = 0$

Solve each equation by factoring.

- 1) $x^{2} + 10x + 21 = 0$ 2) $a^{2} + 7a - 8 = 0$ 3) $k^{2} + 2k - 35 = 0$ 4) $4x^{2} + 20x - 24 = 0$
- 5) $3n^2 75 = 0$ 6) $v^2 - 5v = 0$

Factor Completely. If non-factorable, say so.

1. $2a^2 - 6a$	2. $x^2 - 26x + 25$
3. $x^2 + 12x + 36$	4. $y^2 - 4y - 45$
5. $w^2 - 6w + 7$	6. $2x^2 + 10x + 8$

Solve for x. Show all work. Circle your answers.

$7. x^2 - 3x = 0$	8. $(2x-5)(x+7) = 0$
9. $x^2 + 2x - 15 = 0$	10. $x^2 + 5x = 24$