Two Different Approaches to Factoring Quadratics

Factoring Quadratic Trinomials Notes
There are several ways we can factor a polynomial of the form $a x^{2}+b x+c, a \neq 0$.
Example 1: Factor $x^{2}+5 x+6$
Step 1: List the factors of 6:
Step 2: The value of $c, 6$, is positive. Which factors of 6 add up to 5?
Step 3: The signs of the factors will be positive because b is positive.
Factored version: $(x+3)(x+2)$
Step 4: CHECK YOUR WORK. Multiply your answer and check it is what we started with.
Example 2: Factor $x^{2}-5 x-6$
Step 1: List the factors of 6:
Step 2: The value of $c,-6$, is negative. Which factors of 6 when subtracted give 5 ?
Which factor should be negative and which should be positive?
Step 3: The signs of the 6 should be negative since b is negative 5
Factored version: $(x-6)(x+1)$

Method 3: Diamond Method

This method works for any value of a.

Steps:

- In the top, put the product of a and c.
- In the bottom, put the value of b.

- The left and the right locations are the numbers that when multiplied, give us ac, and when added, give us b, that is ef $=a c$ and $e+f=b$.
- Put a fraction bar over the left and right values, and put a on top. Reduce.
- The top part of the fraction bar is the x-coefficient of the binomial factor, and the bottom part is the constant part.

Example: $2 x^{2}-5 x-3$
1)

2)

3)

4)

$$
\begin{gathered}
\frac{2 x}{-6}=\frac{x}{-3} \longrightarrow x-3 \\
\frac{2 x}{1} \longrightarrow 2 x+1
\end{gathered}
$$

Quadratic equations in factored form can be solved by using the Zero Product Property which states: If the product of two quantities equals zero, at least one of the quantities must equal zero.

You can use the Zero Product Property to solve any quadratic equation written in factored form, such as $(a+b)(a-b)=0$.
Examples: Solve the quadratic equations by factoring

1) Solve $y=x^{2}+4 x-5 \quad$ We substitute zero for y because ZEROES are the SOLUTIONS of quadratic equations.
$0=x^{2}+4 x-5 \quad$ Now we factor the quadratic (see previous lessons) to find the ZEROES.
$0=(x+5)(x-1) \quad$ Find the zeros of $(x+5)(x-1)=0$ by setting each factor equal to 0.
$x+5=0$ or $x-1=0$
Set each factor equal to 0 .
$x=-5$ or $x=1$
Solve each equation for x.
2) Solve $(x-7)(x+2)=0$.
$x-7=0$ or $x+2=0$
Set each factor equal to 0 .
$x=7$ or $x=-2$
Solve each equation for x.

Using Zero Product Property Example (Given Factored Form):

Problem: Find the solutions for: $(x+2)(x-5)=0$
What to do: Set each factor to zero and then solve.
Work:

$$
\begin{array}{ll}
x+2=0 & x-5=0 \\
X=-2 & x=5
\end{array}
$$

Using Zero Product Property Example (Given in Standard Form and not factored):

Problem: \quad Find the solutions for: $x^{2}-4 x-12=0$
What to do: Fire Factor, then Set each factor to zero, and then solve.
Work:

$$
\begin{array}{ll}
(x-6)(x+2)=0 & \\
x+2=0 & x-6=0 \\
x=-2 & x=5
\end{array}
$$

Factoring Trinomials $(a=1)$

Factor each completely.

1) $b^{2}+8 b+7$
2) $n^{2}-11 n+10$
3) $m^{2}+m-90$
4) $n^{2}+4 n-12$
5) $n^{2}-10 n+9$
6) $b^{2}+16 b+64$
7) $m^{2}+2 m-24$
8) $x^{2}-4 x+24$

Solve each equation by using the zero product property.

1) $(n-5)(n+3)=0$
2) $(x-3)(x+1)=0$
3) $(a+3)(a+8)=0$
4) $m(m+7)=0$
5) $(3 x-8)(x-3)=0$
6) $(3 p+1)(8 p-3)=0$
7) $(a-7)(a-3)=0$
8) $(4 v+5)(v+7)=0$
9) $3 p(5 p-1)=0$
10) $(v+8)^{2}=0$

Solve each equation by factoring.

1) $x^{2}+10 x+21=0$
2) $a^{2}+7 a-8=0$
3) $k^{2}+2 k-35=0$
4) $4 x^{2}+20 x-24=0$
5) $3 n^{2}-75=0$
6) $v^{2}-5 v=0$

Factor Completely. If non-factorable, say so.

1.	$2 a^{2}-6 a$	2. $x^{2}-26 x+25$
3.	$x^{2}+12 x+36$	4. $y^{2}-4 y-45$
5. $w^{2}-6 w+7$	6. $2 x^{2}+10 x+8$	

Solve for x . Show all work. Circle your answers.

7. $x^{2}-3 x=0$	$8 . \quad(2 x-5)(x+7)=0$
9. $x^{2}+2 x-15=0$	10. $x^{2}+5 x=24$

