PROCEDURES FOR PROVING IDENTITIES

1. If one side contains one function only, write all trigonometric functions on the other side in terms of that function.

$$\cos^2 \theta - \sin^2 \theta = 1 - 2\sin^2 \theta$$
$$1 - \sin^2 \theta - \sin^2 \theta$$

2. Change all trigonometric functions to $\sin x$ and $\cos x$ and simplify. $\sin x \sec x \cot x = 1$

$$\sin x \cdot \frac{1}{\cos x} \cdot \frac{\cos x}{\sin x}$$

3. Simplify by combining fractions.

$$\frac{\sec x}{\sin x} - \frac{\sin x}{\cos x} = \cot x$$

$$\frac{\sec x \cos x - \sin x \sin x}{\sin x \cos x}$$

$$\frac{1 - \sin^2 x}{\sin x \cos x}$$

$$\frac{\cos^2 x}{\sin x \cos x}$$

 $\frac{\cos x}{\sin x}$

4. Factoring is sometimes helpful.
$$\frac{\cos^2 x - 3\cos x - 4}{\cos x + 1} = \cos x - 4$$

$$\frac{(\cos x - 4)(\cos x + 1)}{\cos x + 1}$$

- 5. Multiply by the conjugate of either the numerator or denominator.
- 6. If there are squares of functions, look for alternate forms of the Pythagorean Identities.
- 7. Avoid the introduction of radicals.
- 8. If the denominator of a fraction consists of only one function, break up the fraction.