Riemann Sum Packet 1 - 3. The rate at which water flows out of a pipe, in gallons per hour, is given by a differentiable function R of time t. The table above shows the rate as measured every 3 hours for a 24-hour period. - (a) Use a midpoint Riemann sum with 4 subdivisions of equal length to approximate $\int_0^{24} R(t) dt$. Using correct units, explain the meaning of your answer in terms of water flow. - (b) Is there some time t, 0 < t < 24, such that R'(t) = 0? Justify your answer. - (c) The rate of water flow R(t) can be approximated by $Q(t) = \frac{1}{79} \left(768 + 23t t^2\right)$. Use Q(t) to approximate the average rate of water flow during the 24-hour time period. Indicate units of measure. | t | R(t) | |---------|--------------------| | (hours) | (gallons per hour) | | 0 | 9.6 | | 3 | 10.4 | | 6 | 10.8 | | 9 | 11.2 | | 12 | 11.4 | | 15 | 11.3 | | 18 | 10.7 | | 21 | 10.2 | | 24 | 9.6 | W(t) (°C) 20 31 28 24 22 21 (days) 0 3 6 9 12 15 The temperature, in degrees Celsius (°C), of the water in a pond is a differentiable function W of time t. The table above shows the water temperature as recorded every 3 days over a 15-day period. - (a) Use data from the table to find an approximation for W'(12). Show the computations that lead to your answer. Indicate units of measure. - (b) Approximate the average temperature, in degrees Celsius, of the water over the time interval 0 ≤ t ≤ 15 days by using a trapezoidal approximation with subintervals of length Δt = 3 days. - (c) A student proposes the function P, given by P(t) = 20 + 10te^(-t/3), as a model for the temperature of the water in the pond at time t, where t is measured in days and P(t) is measured in degrees Celsius. Find P'(12). Using appropriate units, explain the meaning of your answer in terms of water temperature. - (d) Use the function P defined in part (c) to find the average value, in degrees Celsius, of P(t) over the time interval 0 ≤ t ≤ 15 days. A blood vessel is 360 millimeters (mm) long with circular cross sections of varying diameter. The table above gives the measurements of the diameter of the blood vessel at selected points | Distance $x \text{ (mm)}$ | 0 | 60 | 120 | 180 | 240 | 300 | 360 | |---------------------------|----|----|-----|-----|-----|-----|-----| | Diameter $B(x)$ (mm) | 24 | 30 | 28 | 30 | 26 | 24 | 26 | along the length of the blood vessel, where x represents the distance from one end of the blood vessel and B(x) is a twice-differentiable function that represents the diameter at that point. - (a) Write an integral expression in terms of B(x) that represents the average radius, in mm, of the blood vessel between x=0 and x=360. - (b) Approximate the value of your answer from part (a) using the data from the table and a midpoint Riemann sum with three subintervals of equal length. Show the computations that lead to your answer. - (c) Using correct units, explain the meaning of $\pi \int_{125}^{275} \left(\frac{B(x)}{2}\right)^2 dx$ in terms of the blood vessel. - (d) Explain why there must be at least one value x, for 0 < x < 360, such that B''(x) = 0. A test plane flies in a straight line with positive velocity v(t), in miles per minute at time t minutes, where v is a differentiable function of t. Selected | t (min) | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | |------------|-----|-----|-----|-----|-----|-----|-----|-----|-----| | v(t) (mpm) | 7.0 | 9.2 | 9.5 | 7.0 | 4.5 | 2.4 | 2.4 | 4.3 | 7.3 | values of v(t) for $0 \le t \le 40$ are shown in the table above. - (a) Use a midpoint Riemann sum with four subintervals of equal length and values from the table to approximate $\int_0^{40} v(t) dt$. Show the computations that lead to your answer. Using correct units, explain the meaning of $\int_0^{40} v(t) dt$ in terms of the plane's flight. - (b) Based on the values in the table, what is the smallest number of instances at which the acceleration of the plane could equal zero on the open interval 0 < t < 40? Justify your answer. - (c) The function f, defined by $f(t) = 6 + \cos\left(\frac{t}{10}\right) + 3\sin\left(\frac{7t}{40}\right)$, is used to model the velocity of the plane, in miles per minute, for $0 \le t \le 40$. According to this model, what is the acceleration of the plane at t = 23? Indicates units of measure. - (d) According to the model f, given in part (c), what is the average velocity of the plane, in miles per minute, over the time interval $0 \le t \le 40$? | t (seconds) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | |------------------------|---|----|----|----|----|----|----|----|----| | v(t) (feet per second) | 5 | 14 | 22 | 29 | 35 | 40 | 44 | 47 | 49 | Rocket A has positive velocity v(t) after being launched upward from an initial height of 0 feet at time t = 0 seconds. The velocity of the rocket is recorded for selected values of t over the interval $0 \le t \le 80$ seconds, as shown in the table above. - (a) Find the average acceleration of rocket A over the time interval $0 \le t \le 80$ seconds. Indicate units of measure. - (b) Using correct units, explain the meaning of $\int_{10}^{70} v(t) dt$ in terms of the rocket's flight. Use a midpoint Riemann sum with 3 subintervals of equal length to approximate $\int_{10}^{70} v(t) dt$. - (c) Rocket *B* is launched upward with an acceleration of $a(t) = \frac{3}{\sqrt{t+1}}$ feet per second per second. At time t = 0 seconds, the initial height of the rocket is 0 feet, and the initial velocity is 2 feet per second. Which of the two rockets is traveling faster at time t = 80 seconds? Explain your answer. | t (hours) | 0 | 1 | 3 | 4 | 7 | 8 | 9 | |---------------|-----|-----|-----|-----|-----|----|---| | L(t) (people) | 120 | 156 | 176 | 126 | 150 | 80 | 0 | Concert tickets went on sale at noon (t = 0) and were sold out within 9 hours. The number of people waiting in line to purchase tickets at time t is modeled by a twice-differentiable function L for $0 \le t \le 9$. Values of L(t) at various times t are shown in the table above. - (a) Use the data in the table to estimate the rate at which the number of people waiting in line was changing at 5:30 P.M. (t = 5.5). Show the computations that lead to your answer. Indicate units of measure. - (b) Use a trapezoidal sum with three subintervals to estimate the average number of people waiting in line during the first 4 hours that tickets were on sale. - (c) For $0 \le t \le 9$, what is the fewest number of times at which L'(t) must equal 0? Give a reason for your answer. - (d) The rate at which tickets were sold for $0 \le t \le 9$ is modeled by $r(t) = 550te^{-t/2}$ tickets per hour. Based on the model, how many tickets were sold by 3 P.M. (t = 3), to the nearest whole number?