Part 1:
For each of the functions below, answer the following questions:

$$
f(x)=x^{2}+4
$$

$$
g(x)=\sqrt{2 x-3}+1 \quad h(x)=\frac{2}{x}
$$

1. Find the domain and range for each.

$$
\begin{aligned}
& d: \frac{f(x)}{\mathbb{R}(-\infty, \infty)} \\
& R:[4, \infty)
\end{aligned}
$$

$$
\frac{g(x)}{d:[3 / 2, \infty)}
$$

$$
h(x)
$$

$$
d:(-\infty, 0) \cup(0, \infty)
$$

$$
R:[1, \infty)
$$

$$
r:(-\infty, 0) \cup(0, \infty)
$$

2. Find the inverse for each function. Are the inverses functions? \Rightarrow pass the horizontal

$$
\begin{gathered}
\frac{f(x)}{=y^{2}}+4 \\
f^{-1}(x)=\sqrt{x-4} \\
\text { NOD }
\end{gathered}
$$

$$
\begin{aligned}
& g(x) \\
& x=\sqrt{2 y-3}+1 \\
& x-1=\sqrt{2 y-3} \\
& x^{2}-2 x+1=2 y-3
\end{aligned}
$$

$$
\begin{aligned}
& \text { test? } \\
& \frac{h(x)}{x=\frac{2}{y}} \\
& y x=2
\end{aligned}
$$

3. Find the domain and range for each inverse. $x^{2}-2 x+4=2 y$

$$
\begin{array}{lll}
\frac{f(x)}{d:[4, \infty)} & \frac{g(x)}{d:[1, \infty)} & g^{-1}(x)=\frac{1}{2} x^{2}-x+2 \\
r:(-\infty, \infty) & r:[3 / 2, \infty) & \frac{h(x)}{\text { yes!! }}
\end{array}
$$

$$
h^{-1}(x)=\frac{2}{x}
$$

yes!!
4. Determine whether each function is even, odd, or neither (both algebraically and graphically).

$$
\begin{aligned}
f(x) & =(-x)^{2}+4 \\
& =x^{2}+4
\end{aligned}
$$

$$
g(x)=\sqrt{2(-x)-3}+1
$$

$$
h(x)=\frac{2}{(-x)}
$$

neither!!
odd!!
5. Which of the above functions are:

Bounded below? Increasing over their entire domain? A one-to-one function?

$f(x)$	$g(x)$
$g(x)$	$g(x)$
	$h(x)$

6. Find $g(f(x)) g\left(x^{2}+4\right)=\sqrt{2\left(x^{2}+4\right)-3}+1$

$$
\begin{aligned}
& =\sqrt{2 x^{2}+8-3}+1 \\
& =\sqrt{2 x^{2}+5}+1
\end{aligned}
$$

7. State the graph transformations from $y=\sqrt{x}$ to $g(x)$.
(1) $\uparrow 1$
(1) $\rightarrow 3$
(2) $\rightarrow 3$

OR
(2)hon3. shrink bafo 2
(3) horiz. shrink bafo 2

Part 2:
Use the following functions to evaluate key features of its graph:

$$
\begin{array}{lcccc|c}
f(x)=\frac{x^{2}-3 x-10}{x^{2}-4} & g(x)=x^{3}-5 x^{2}+2 x+8 & \left.h(x)=\frac{x^{2}+2 x-3}{x+2}-2 \right\rvert\, 1 & 2 & -3 \\
\hline \text { symptotes and removable discontinuities for } \mathrm{f}(\mathrm{x}) \text { and } \mathrm{h}(\mathrm{x}) . & \frac{d}{2}-2 & 0 \\
\hline 1 & 0 & -3
\end{array}
$$

8. Find all asymptotes and removable discontinuities for $f(x)$ and $h(x)$.

$$
\text { V.A.: } x=2 \quad \text { S.A. }: n / a
$$

$$
\text { H.A } \quad y=1 \quad \text { R.D. }(-2,7 / 4)
$$

$$
\begin{aligned}
& h(x)=\frac{(x+3)(x-1)}{(x+2)} \\
& V A: x=-2 \quad \text { S.A: } y=x \\
& \text { H.A. } n / a \quad \text { R.D: } n / a
\end{aligned}
$$

9. Find $\lim _{x \rightarrow-\infty} g(x)$, and $\lim _{x \rightarrow \infty} g(x)$

$$
\lim _{x \rightarrow-\infty} g(x)=-\infty \quad \lim _{x \rightarrow \infty} g(x)=\infty
$$

10. Find $\lim _{x \rightarrow 2^{-}} f(x)$, and $\lim _{x \rightarrow 2^{+}} f(x)$

11. State the intervals where $g(x)$ is increasing / decreasing.

$$
\begin{aligned}
& I:(-\infty, .21) \cup(3.12, \infty) \\
& D:(.21,3.12)
\end{aligned}
$$

Part 3:
Answer the following:
12. Write the equation of a line given $f(3)=1$ and $f(-2)=6$.

$$
\begin{array}{lll}
y-1=-1(x-3) & (3,1)(-2,6) & y=M x, b \\
\text { OR } & M=\frac{5}{-5}=-1 & 1=-1(3)+b \\
y-6=-1(x+2) & 1=-3+b \\
\text { OR } & & 4-b
\end{array}
$$

$$
y=-x+4
$$

13. Write the equation of a parabola whose vertex is at $(-2,1)$ and contains $(-4,-7)$.

$$
\begin{aligned}
& y=a(x-n)^{2}+k \\
& -7=a(-4+2)^{2}+1 \\
& -8=a(4) \\
& -2=a
\end{aligned}
$$

14. Solve: $\sqrt{5 x+1}=x-1$

$$
\begin{array}{rlrl}
5 x+1 & =x^{2}-2 x+1 & x & =x, 7 \\
0 & =x^{2}-7 x & \uparrow \\
0 & =x(x-7) & & \text { extraneous }
\end{array}
$$

15. Write $y=\left(2 x^{2}-8 x\right)+5$ in VERTEX form.

$$
\begin{aligned}
& y=2\left(x^{2}-4 x+4\right)+5-8 \\
& y=2(x-2)^{2}-3
\end{aligned}
$$

16. Write the equation of a polynomial whose zeros include 2 and $3+2 \mathrm{i}$.

$$
p(x)=(x-2)(x-3-2 i)(x-3+2 i)
$$

17. Solve $x^{3}+x^{2}-6 x \geq 0$ algebraically and graphically.

$$
\begin{aligned}
& x\left(x^{2}+x-6\right) \geq 0 \\
& x(x+3)(x-2) \geq 0
\end{aligned}
$$

18. Find ALL the zeros for $y=x^{4}-x^{3}-3 x^{2}+17 x-30$. CALC OK

$$
\begin{aligned}
& x=-3,2 \text { (zeros on call) } \\
& \begin{array}{rrrr|r}
-31 & -1 & -3 & 17 & -30 \\
1 & -3 & 12 & -27 & 30 \\
\hline 1 & -4 & 9 & -10 & 0
\end{array} \\
& \begin{array}{rrr|r}
1 & -4 & 9 & -10 \\
d & 2 & -4 & 10 \\
\hline 1 & -2 & 5 & 0
\end{array} \\
& x=-3,2,1+2 i, 1-2 i \\
& x^{2}-2 x+5=0 \\
& x=\frac{2 \pm \sqrt{4-4(5)}}{2} \\
& x=\frac{2 \pm \sqrt{-16}}{2} \\
& x=\frac{2 \pm 4 i}{2} \Rightarrow 1 \pm 2 i
\end{aligned}
$$

Also Know: Box Problems, Zeros/Multiplicity, Graphing a "Piece-Wise" function, Imaginary numbers, etc.

