Pre-Calculus Q1 Cumulative Review

Complete on a Separate Sheet of Paper

Part 1:

For each of the functions below, answer the following questions:

$$f(x) = x^2 + 4$$

$$g(x) = \sqrt{2x - 3} + 1$$

$$h(x) = \frac{2}{x}$$

1. Find the domain and range for each.

$$f(x)$$
 $d: \mathbb{R}(-\infty, \infty)$

$$\frac{g(x)}{d:[3/2,\infty)} \qquad h(x)$$

$$d:(-\infty,0) \cup (0,\infty)$$

2. Find the inverse for each function. Are the inverses functions? \Rightarrow pass the horizontal Line test?

$$\frac{f(x)}{x = y^2 + 4}$$

$$f^{-1}(x) = \sqrt{x - 4}$$
NOI

g(x)

$$x = \sqrt{2y - 3} + 1$$

 $x - 1 = \sqrt{2y - 3}$
 $x = \sqrt{2y - 3}$
 $x = 2$
 $x = 2$
 $y = 2$

$$\frac{h(x)}{x = \frac{2}{y}}$$

$$yx = 2$$

3. Find the domain and range for each inverse. $x^2 - 2x + 4 = 24$

$$\frac{f(x)}{d:[4,\infty)}$$
 $\frac{g(x)}{d:[1,\infty)}$

$$g^{-1}(x) = \frac{1}{2}x^2 - x + 2$$

$$h^{-1}(x) = \frac{2}{x}$$
yes!!

$$d: [4,\infty)$$
 $d: [1,\infty)$
 $r: (-\infty,\infty)$ $r: [3/2,\infty)$ $h(x)$

4. Determine whether each function is even, odd, or neither (both algebraically and graphically).

$$f(x) = (-x)^2 + 4$$

= $x^2 + 4$

$$g(x) = \sqrt{2(-x)-3} + 1$$
 $h(x) = \frac{2}{(-x)}$

$$h(x) = \frac{2}{(-x)}$$

oddll

evenll

5. Which of the above functions are:

Bounded below?

Increasing over their entire domain? A one-to-one function?

h(x)

6. Find
$$g(f(x)) g(x^2 + H) = \sqrt{2(x^2 + H) - 3} + 1$$

= $\sqrt{2x^2 + 8 - 3} + 1$
= $\sqrt{2x^2 + 5} + 1$

7. State the graph transformations from $y = \sqrt{x}$ to g(x).

Part 2:

Use the following functions to evaluate key features of its graph:

$$f(x) = \frac{x^2 - 3x - 10}{x^2 - 4}$$

$$g(x) = x^3 - 5x^2 + 2x + 8$$

$$h(x) = \frac{x^2 + 2x - 3}{x + 2} - 2 \begin{vmatrix} 1 & 2 & -3 \\ 1 & -2 & 0 \end{vmatrix}$$

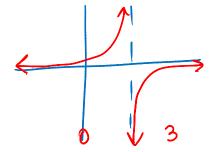
8. Find all asymptotes and removable discontinuities for f(x) and h(x).

$$f(x) = (x-5)(x+2)$$

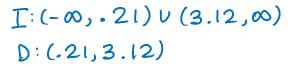
 $(x-2)(x+2)$

$$h(x) = (\underbrace{x+3(x-1)}_{(x+2)}$$

V.A.:
$$x=2$$
 S.A.: n/a
H.A $y=1$ R.D. $(-2, 7/4)$


$$VA:X=-2$$
 S.A: $y=X$
H.A. n/a R.D: n/a

9. Find $\lim_{x\to -\infty} g(x)$, and $\lim_{x\to \infty} g(x)$


$$\lim_{x \to -\infty} g(x) = -\infty \qquad \lim_{x \to -\infty} g(x) = \infty$$


10. Find $\lim_{x\to 2^-} f(x)$, and $\lim_{x\to 2^+} f(x)$

11. State the intervals where g(x) is increasing / decreasing.

Part 3:

Answer the following:

12. Write the equation of a line given f(3) = 1 and f(-2) = 6.

$$y-1=-1(x-3)$$
or
 $y-6=-1(x+2)$
or

$$(3,1) \quad (-2,6) \\ M = \frac{5}{5} = -1$$

$$y = Mx \cdot b$$

 $1 = -1(3) + b$
 $1 = -3 + b$
 $4 - b$

$$y = -x + 4$$
13. Write the equation of a parabola whose vertex is at (-2,1) and contains (-4,-7).

$$y=a(x-h)^{2}+k$$

$$-7=a(-4+2)^{2}+1$$

$$-8=a(4)$$

$$-2=a$$

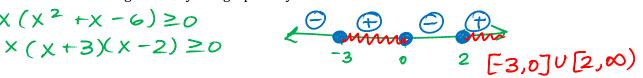
$$y=-2(x+2)^{2}+1$$

14. Solve: $\sqrt{5x+1} = x-1$

14. Solve.
$$\sqrt{3x+1} = x = 1$$

 $5x+1 = x^2 - 2x + 1$
 $0 = x^2 - 7x$
 $0 = x(x-7)$
15. Write $y = (2x^2 - 8x) + 5$ in VERTEX form.
 $y = 2(x^2 - 4x + 4) + 5 - 8$
 $y = 2(x-2)^2 - 3$

extraneous


$$y=2(x^2-4x+4)+5-8$$

 $y=2(x-2)^2-3$

16. Write the equation of a polynomial whose zeros include 2 and 3+2i.

$$p(x) = (x-2)(x-3-2i)(x-3+2i)$$

17. Solve $x^3 + x^2 - 6x \ge 0$ algebraically and graphically.

$$X(X^{2} + X - 6) \ge 0$$
$$X(X + 3)(X - 2) \ge 0$$

18. Find ALL the zeros for $y = x^4 - x^3 - 3x^2 + 17x - 30$. CALC OK X = -3, 2 (Zeros on Calc)

and ALL the zeros for
$$y = x^4 - x^3 - 3x^2 + 17x - 30$$
. CALC OK
 $X = -3,2$ (zeros on calc) $X = -3,2,1+2\hat{\nu},1-2\hat{\nu}$
 -3 1 -1 -3 17 | -30 -2 -3 12 -27 30 -2 -3 12 -27 30 -2 -4 9 -10 0

$$x = \frac{2 \pm \sqrt{4 - 4(5)}}{2}$$

$$X = 2 \pm \sqrt{-16}$$

$$2$$

$$X = 2 \pm 4i \Rightarrow 1 \pm 2i$$

Also Know: Box Problems, Zeros/Multiplicity, Graphing a "Piece-Wise" function, Imaginary numbers, etc.