Free-Response Questions Scoring Guidelines

Scoring Guidelines for Question 1: Function Concepts Part A: Graphing calculator required

 x
 1
 2
 3
 4
 5

 f(x)
 1
 3
 5
 3
 1

The domain of *f* consists of the five real numbers 1, 2, 3, 4, and 5. The table defines the function *f* for these values. The function *g* is given by $g(x)=2\ln x$.

Model Solution

(A) (i) The function h is defined by $h(x) = (g \circ f)(x) = g(f(x))$. Find the value of h(4) as a decimal approximation, or indicate that it is not defined.

(ii) Find all values of x for which f(x) = 3, or indicate there are no such values.

(i) $h(4) = g(f(4)) = g(3) = 2 \ln 3 = 2.197$	Value	l point 2.A
(ii) From the table, $f(x) = 3$ when $x = 2$ and $x = 4$.	Values	1 point 2.A
	Total for part (A)	2 points

- (B) (i) Find all values of x, as decimal approximations, for which g(x)=3, or indicate there are no such values.
 - (ii) Determine the end behavior of g as x increases without bound. Express your answer using the mathematical notation of a limit.

	Total for part (B)	2 points
(ii) The function g is increasing. As x increases without bound, $g(x)$ increases without bound. Therefore, $\lim_{x\to\infty} g(x) = \infty$.	End behavior with limit notation	l point 3.A
x = 4.482 (OR 4.481)		1.A
(i) $g(x) = 3 \Rightarrow 2\ln x = 3$	Answer	1 point

(C) (i) Determine if *f* has an inverse function.

(ii) Give a reason for your answer based on the definition of a function and the table of values of f(x).

(i) <i>f</i> does not have an inverse function on its domain of the five real numbers 1, 2, 3, 4, and 5.	Answer	1 point 1.C
(ii) There are output values of f that are not mapped from unique input values. (The function f is not one-to-one.) Because $f(1) = 1$ and $f(5) = 1$, the inverse function on this domain does not exist.	Reason	l point 3.C
A reason that only states "fails the horizontal line test" is not sufficient.		
	Total for part (C)	2 points
	Total for Question 1	6 points

6 points

Scoring

Scoring Guidelines for Question 2: Modeling a Non-Periodic Context Part A: Graphing calculator required

6 points

2 points

An ecologist began studying a certain type of plant species in a wetlands area in 2013. In 2015 (t = 2), there were 59 plants. In 2021 (t = 8), there were 118 plants.

The number of plants in this species can be modeled by the function *P* given by $P(t) = ab^t$, where P(t) is the number of plants during year *t*, and *t* is the number of years since 2013.

	Model Solution	Scoring	
(A)	(i) Use the given data to write two equations that can be used to f and <i>b</i> in the expression for $P(t)$.	ind the values for constants <i>a</i>	
	(ii) Find the values for a and b as decimal approximations.		
	(i) Because $P(2) = 59$ and $P(8) = 118$, two equations to find <i>a</i> and <i>b</i> are $ab^2 = 59$	Two equations	l point 1.C
	<i>ab</i> ⁸ = 118.		
	(ii)	Values of <i>a</i> and <i>b</i>	1 point
	$a = \frac{59}{b^2} \Rightarrow \left(\frac{59}{b^2}\right) b^8 = 118$		1.0
	$b = \left(\frac{118}{59}\right)^{1/6} = 1.122462$		
	<i>a</i> = 46.828331		
	$P(t) = 46.828(1.122)^{t}$		

(B)	(i)	Use the given data to find the average rate of change of the number of plants, in plants
		per year, from $t = 2$ to $t = 8$ years. Express your answer as a decimal approximation. Show
		the computations that lead to your answer.

- (ii) Use the average rate of change found in (i) to estimate the number of plants for t = 10 years. Show the work that leads to your answer.
- (iii) The average rate of change found in (i) can be used to estimate the number of plants during year t for t > 10 years. Will these estimates, found using the average rate of change, be less than or greater than the number of plants predicted by the model P during year t for t > 10 years? Explain your reasoning.

(i) $\frac{P(8) - P(2)}{8 - 2} = \frac{(118 - 59)}{6} = 9.833327$ The average rate of change is 9.833 plants per year.	Average rate of change	l point 1.B
(ii) The average rate of change is		
$r = \frac{P(8) - P(2)}{8 - 2} = 9.833327.$	Estimate using average rate of change	1 point 3.B
The secant line between point (2, <i>P</i> (2)) and point		

Total for part (A)

For which <i>t</i> -value, $t = 6$ years or $t = 20$ years, should the ecologist when using the model <i>P</i> ? Give a reason for your answer in the co The ecologist should have more confidence in using the model for t = 6 years. There is insufficient information to know how many years the exponential model can be extended above the maximum time provided in the data ($t = 8$) to make reasonable predictions. On the other hand, it is appropriate to use the regression model to estimate values at times that fall between the minimum time ($t = 2$) and the maximum time ($t = 8$) provided in the data.	Total for part (D) Total for part (C)	3 points 1 point 3.C 1 point
For which <i>t</i> -value, $t = 6$ years or $t = 20$ years, should the ecologist when using the model <i>P</i> ? Give a reason for your answer in the co The ecologist should have more confidence in using the model for t = 6 years. There is insufficient information to know how many years the exponential model can be extended above the maximum time provided in the data ($t = 8$) to make reasonable predictions. On the other hand, it is appropriate to use the regression model to estimate values at times that fall between the minimum time ($t = 2$) and the maximum time ($t = 8$) provided in the data.	Answer with reason	3 points 1 point 3.C
For which <i>t</i> -value, $t = 6$ years or $t = 20$ years, should the ecologist when using the model <i>P</i> ? Give a reason for your answer in the co	have more confidence in	3 points
	Total for part (D)	3 points
	Total for part (B)	- • •
Therefore, the estimate using the average rate of change is less than the value of $P(t)$ for $t > 10$.		
(iii) The estimate using the average rate of change is the <i>y</i> -coordinate of a point on the secant line that passes through $(2, P(2))$ and $(8, P(8))$. Because the graph of <i>P</i> is concave up on the interval $(-\infty,\infty)$, the secant line is below the graph of <i>P</i> outside of the interval $(2, 8)$.	Answer with explanation	l point 3.C
The number of plants for $t = 10$ years was approximately 137 or 138.		
y = 59 + r(10 - 2) = 137.667.		
For <i>x</i> = 10,		
Both of these produce the same estimate.		
OR		
y = P(2) + r(x - 2)		
Estimates using the average rate of change are given by		
where (x_1, y_1) can be either one of the points.		
(8, P(8)) is given by $y = y_1 + \left(\frac{P(8) - P(2)}{8 - 2}\right) (x - x_1),$		
	$(8, P(8)) \text{ is given by } y = y_1 + \left(\frac{P(8)-P(2)}{8-2}\right)(x-x_1),$ where (x_1, y_1) can be either one of the points. Estimates using the average rate of change are given by y = P(2) + r(x-2) OR y = P(8) + r(x-8). Both of these produce the same estimate. For $x = 10$, y = 59 + r(10-2) = 137.667. The number of plants for $t = 10$ years was approximately 137 or 138. (iii) The estimate using the average rate of change is the <i>y</i> -coordinate of a point on the secant line that passes through $(2, P(2))$ and (8, P(8)). Because the graph of <i>P</i> is concave up on the interval $(-\infty, \infty)$, the secant line is below the graph of <i>P</i> outside of the interval $(2, 8)$. Therefore, the estimate using the average rate of change is less than the value of $P(t)$ for $t > 10$.	$(8, P(8)) \text{ is given by } y = y_1 + \left(\frac{P(8) - P(2)}{8 - 2}\right)(x - x_1),$ where (x_1, y_1) can be either one of the points. Estimates using the average rate of change are given by y = P(2) + r(x - 2) OR y = P(8) + r(x - 8). Both of these produce the same estimate. For $x = 10,$ y = 59 + r(10 - 2) = 137.667. The number of plants for $t = 10$ years was approximately 137 or 138. (iii) The estimate using the average rate of change is the <i>y</i> -coordinate of a point on the secant line that passes through $(2, P(2))$ and (8, P(8)). Because the graph of <i>P</i> is concave up on the interval $(-\infty, \infty)$, the secant line is below the graph of <i>P</i> outside of the interval $(2, 8).$ Therefore, the estimate using the average rate of change is less than the value of $P(t)$ for $t > 10.$

Scoring Guidelines for Question 3: Modeling a Periodic Context Part B: Graphing calculator not allowed

Note: Figure not drawn to scale.

The figure shows a clock standing on a level floor with a close-up view of the clock face. The clock face has a 10-centimeter-long moving hour hand. The center of the clock face is 200 centimeters from the floor. At time t=0 hours, the hour hand is pointing directly up to the 12. The next time the hour hand points directly up to the 12 is at time t=12 hours. As the hour hand moves, the distance of the endpoint of the hour hand from the floor periodically decreases and increases.

The sinusoidal function h models the distance, in centimeters, of the endpoint of the hour hand from the floor as a function of time t in hours.

(A) The graph of *h* and its dashed midline for two full cycles is shown. Five points, *F*, *G*, *J*, *K*, and *P*, are labeled on the graph. No scale is indicated, and no axes are presented.

Determine possible coordinates (t, h(t)) for the five points: *F*, *G*, *J*, *K*, and *P*.

F has coordinates (0, 210).	h(t)-coordinates	1 point 2.B
G has coordinates (3, 200).		
J has coordinates (6, 190).	t-coordinates	1 point
K has coordinates (9, 200).		2.0
P has coordinates (12, 210).		
Note: <i>t</i> -coordinates will vary. A correct set of coordinates for one full cycle of <i>h</i> as pictured is acceptable.		

Total for part (A) 2 points

(B) The function *h* can be written in the form $h(t) = a\sin(b(t+c)) + d$. Find values of constants *a*, *b*, *c*, and *d*.

$h(t) = a\sin(b(t+c)) + d$	Vertical transformations: Values of <i>a</i> and <i>d</i>	l point 1.C
$\frac{2\pi}{b} = 12, \text{ so } b = \frac{2\pi}{12} = \frac{\pi}{6}$ c = -9	Horizontal transformations: Values of <i>b</i> and <i>c</i>	l point 1.C
$d = 200$ $h(t) = 10\sin\left(\frac{\pi}{6}(t-9)\right) + 200$ OR		
$a = -10$ $2\pi 12 a = h 2\pi \pi$		
$\frac{1}{b} = 12, \text{ so } b = \frac{1}{12} = \frac{1}{6}$ c = 9		
d = 200		
$h(t) = -10 \sin\left(\frac{-(t+9)}{6}\right) + 200$		
correct forms for $h(t)$.		
	Total for part (B)	2 points

(C) Refer to the graph of h in part (A). The t-coordinate of J is t_1 , and the t-coordinate of K is t_2 .

(i) On the interval (t_1, t_2) , which of the following is true about *h* ?

- a. *h* is positive and increasing.
- b. *h* is positive and decreasing.
- c. *h* is negative and increasing.
- d. *h* is negative and decreasing.

(ii) Describe how the rate of change of *h* is changing on the interval (t_1, t_2) .

(i) Choice a.	Function behavior	1 point 2.A
(ii) Because the graph of <i>h</i> is concave up on the interval (t_1, t_2) , the rate of change of <i>h</i> is increasing on the interval (t_1, t_2) .	Change in rate of change	1 point 3.A
	Total for part (C)	2 points

Total for Question 3 6 points

Scoring Guidelines for Question 4: Symbolic Manipulations Part B: Graphing calculator not allowed

Directions:

- Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f(x) is a real number. Angle measures for trigonometric functions are assumed to be in radians.
- Solutions to equations must be real numbers. Determine the exact value of any expression that can be obtained without a calculator. For example, $\log_2 8$, $\cos\left(\frac{\pi}{2}\right)$, and $\sin^{-1}(1)$ can be evaluated without a calculator.
- Unless otherwise specified, combine terms using algebraic methods and rules for exponents and logarithms, where applicable. For example, 2x+3x, $5^2 \cdot 5^3$, $\frac{x^5}{x^2}$, and $\ln 3 + \ln 5$ should be rewritten in equivalent forms.
- For each part of the question, show the work that leads to your answers.

Model Solution

Scoring

(A) The functions *g* and *h* are given by

$$g(x) = \log_4(2x)$$

 $h(x) = \frac{(e^x)^5}{e^{1/4}}.$

(i) Solve g(x)=3 for values of x in the domain of g.

(ii) Solve $h(x) = e^{1/2}$ for values of x in the domain of h.

(i) $g(x) = 3$ $\log_4(2x) = 3$	Solution to $g(x) = 3$	ıt A
$4^3 = 2x$	-	
$x = \frac{4^3}{2} = 32$		
(ii) $h(x) = e^{1/2}$		
$\frac{(e^{X})^{5}}{e^{1/4}} = e^{1/2}$	Solution to $h(x) = e^{1/2}$	A
$e^{(5x-1/4)} = e^{1/2}$		
$5x - \frac{1}{4} = \frac{1}{2}$		
$5x = \frac{3}{4}$		
$x = \frac{3}{20}$		

Total for part (A) 2 points

(B) The functions *j* and *k* are given by

 $j(x) = \log_{10}(x+1) - 5\log_{10}(2-x) + \log_{10} 3$ $k(x) = \sec x - \cos x.$

- (i) Rewrite j(x) as a single logarithm base 10 without negative exponents in any part of the expression. Your result should be of the form $\log_{10}(\text{expression})$.
- (ii) Rewrite k(x) as a product involving tan x and sin x and no other trigonometric functions.

(i) $j(x) = \log_{10}(x+1) - 5\log_{10}(2-x) + \log_{10} 3$ $j(x) = \log_{10}(x+1) - \log_{10}(2-x)^5 + \log_{10} 3$ $j(x) = \log_{10}\left(\frac{3(x+1)}{(2-x)^5}\right), -1 < x < 2$	Expression for $j(x)$	l point 1.B
(ii) $k(x) = \sec x - \cos x$ $k(x) = \frac{1}{\cos x} - \cos x$ $k(x) = \frac{1 - \cos^2 x}{\cos x}$ $k(x) = \frac{\sin^2 x}{\cos x} = \tan x \sin x, \cos x \neq 0$	Expression for $k(x)$	l point 1.B

Total for part (B) 2 points

(C) The function *m* is given by

$$m(x)=2\tan^{-1}(\sqrt{3}\pi x).$$

Find all input values in the domain of *m* that yield an output value of $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$.

$m(x) = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \Rightarrow 2\tan^{-1}\left(\sqrt{3}\pi x\right) = \frac{\pi}{3}$	$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$
$\tan^{-1}\left(\sqrt{3}\pi x\right) = \frac{\pi}{6}$ $\sqrt{3}\pi x = \tan\left(\frac{\pi}{6}\right)$	Input value 1 point 1.A
$\sqrt{3}\pi x = \frac{1}{\sqrt{3}}$ $x = \frac{1}{3\pi}$	

Total for Question 46 points