Polar

AP ${ }^{\circledR}$ CALCULUS BC

 2007 SCORING GUIDELINES
Question 3

The graphs of the polar curves $r=2$ and $r=3+2 \cos \theta$ are shown in the figure above. The curves intersect when $\theta=\frac{2 \pi}{3}$ and $\theta=\frac{4 \pi}{3}$.
(a) Let R be the region that is inside the graph of $r=2$ and also inside the graph of $r=3+2 \cos \theta$, as shaded in the figure above. Find the area of R.
(b) A particle moving with nonzero velocity along the polar curve given by $r=3+2 \cos \theta$ has position $(x(t), y(t))$ at time t, with $\theta=0$ when $t=0$. This particle moves along the curve so that $\frac{d r}{d t}=\frac{d r}{d \theta}$.

Find the value of $\frac{d r}{d t}$ at $\theta=\frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.
(c) For the particle described in part (b), $\frac{d y}{d t}=\frac{d y}{d \theta}$. Find the value of $\frac{d y}{d t}$ at $\theta=\frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.
(a) Area $=\frac{2}{3} \pi(2)^{2}+\frac{1}{2} \int_{2 \pi / 3}^{4 \pi / 3}(3+2 \cos \theta)^{2} d \theta$

$$
=10.370
$$

(b) $\left.\frac{d r}{d t}\right|_{\theta=\pi / 3}=\left.\frac{d r}{d \theta}\right|_{\theta=\pi / 3}=-1.732$

The particle is moving closer to the origin, since $\frac{d r}{d t}<0$ and $r>0$ when $\theta=\frac{\pi}{3}$.
(c) $y=r \sin \theta=(3+2 \cos \theta) \sin \theta$

$$
\left.\frac{d y}{d t}\right|_{\theta=\pi / 3}=\left.\frac{d y}{d \theta}\right|_{\theta=\pi / 3}=0.5
$$

The particle is moving away from the x-axis, since $\frac{d y}{d t}>0$ and $y>0$ when $\theta=\frac{\pi}{3}$.
$4:\left\{\begin{array}{l}1: \text { area of circular sector } \\ 2: \text { integral for section of limaçon } \\ 1: \text { integrand } \\ 1: \text { limits and constant } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1:\left.\frac{d r}{d t}\right|_{\theta=\pi / 3} \\ 1: \text { interpretati }\end{array}\right.$
1 : interpretation
$3:\left\{\begin{array}{l}1: \text { expression for } y \text { in terms of } \theta \\ 1:\left.\frac{d y}{d t}\right|_{\theta=\pi / 3} \\ 1: \text { interpretation }\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS BC 2005 SCORING GUIDELINES

Question 2

The curve above is drawn in the $x y$-plane and is described by the equation in polar coordinates $r=\theta+\sin (2 \theta)$ for $0 \leq \theta \leq \pi$, where r is measured in meters and θ is measured in radians. The derivative of r with respect to θ is given by $\frac{d r}{d \theta}=1+2 \cos (2 \theta)$.
(a) Find the area bounded by the curve and the x-axis.
(b) Find the angle θ that corresponds to the point on the curve with
 x-coordinate -2 .
(c) For $\frac{\pi}{3}<\theta<\frac{2 \pi}{3}, \frac{d r}{d \theta}$ is negative. What does this fact say about r ? What does this fact say about the curve?
(d) Find the value of θ in the interval $0 \leq \theta \leq \frac{\pi}{2}$ that corresponds to the point on the curve in the first quadrant with greatest distance from the origin. Justify your answer.
(a) Area $=\frac{1}{2} \int_{0}^{\pi} r^{2} d \theta$

$$
=\frac{1}{2} \int_{0}^{\pi}(\theta+\sin (2 \theta))^{2} d \theta=4.382
$$

(b) $-2=r \cos (\theta)=(\theta+\sin (2 \theta)) \cos (\theta)$ $\theta=2.786$
$3:\left\{\begin{array}{l}1: \text { limits and constant } \\ 1: \text { integrand } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { equation } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { information about } r \\ 1: \text { information about the curve }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \theta=\frac{\pi}{3} \text { or } 1.047 \\ 1: \text { answer with justification }\end{array}\right.$

θ	r
0	0
$\frac{\pi}{3}$	1.913
$\frac{\pi}{2}$	1.571

The greatest distance occurs when $\theta=\frac{\pi}{3}$.

A ${ }^{\circledR}$ CALCULUS BC 2003 SCORING GUIDELINES

Question 3

The figure above shows the graphs of the line $x=\frac{5}{3} y$ and the curve C given by $x=\sqrt{1+y^{2}}$. Let S be the shaded region bounded by the two graphs and the x-axis. The line and the curve intersect at point P.
(a) Find the coordinates of point P and the value of $\frac{d x}{d y}$ for curve C at point P.
(b) Set up and evaluate an integral expression with respect to y that gives the area of S.

(c) Curve C is a part of the curve $x^{2}-y^{2}=1$. Show that $x^{2}-y^{2}=1$ can be written as the polar equation $r^{2}=\frac{1}{\cos ^{2} \theta-\sin ^{2} \theta}$.
(d) Use the polar equation given in part (c) to set up an integral expression with respect to the polar angle θ that represents the area of S.
(a) At $P, \frac{5}{3} y=\sqrt{1+y^{2}}$, so $y=\frac{3}{4}$.

Since $x=\frac{5}{3} y, x=\frac{5}{4}$.
$2:\left\{\begin{array}{l}1: \text { coordinates of } P \\ 1: \frac{d x}{d y} \text { at } P\end{array}\right.$
$\frac{d x}{d y}=\frac{y}{\sqrt{1+y^{2}}}=\frac{y}{x}$. At $P, \frac{d x}{d y}=\frac{3 / 4}{5 / 4}=\frac{3}{5}$.
(b) Area $=\int_{0}^{3 / 4}\left(\sqrt{1+y^{2}}-\frac{5}{3} y\right) d y$

$$
=0.346 \text { or } 0.347
$$

(c) $x=r \cos \theta ; y=r \sin \theta$
$x^{2}-y^{2}=1 \Rightarrow r^{2} \cos ^{2} \theta-r^{2} \sin ^{2} \theta=1$
$r^{2}=\frac{1}{\cos ^{2} \theta-\sin ^{2} \theta}$
(d) Let β be the angle that segment $O P$ makes with the x-axis. Then $\tan \beta=\frac{y}{x}=\frac{3 / 4}{5 / 4}=\frac{3}{5}$.

$$
\begin{aligned}
\text { Area } & =\int_{0}^{\tan ^{-1}(3 / 5)} \frac{1}{2} r^{2} d \theta \\
& =\frac{1}{2} \int_{0}^{\tan ^{-1}(3 / 5)} \frac{1}{\cos ^{2} \theta-\sin ^{2} \theta} d \theta
\end{aligned}
$$

$3:\left\{\begin{array}{l}1: \text { limits } \\ 1: \text { integrand } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { substitutes } x=r \cos \theta \text { and } \\ y=r \sin \theta \text { into } x^{2}-y^{2}=1 \\ 1: \text { isolates } r^{2}\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { limits } \\ 1: \text { integrand and constant }\end{array}\right.$

