Summative Review for Sequences and Series

You must know your formulas!
There are up to 8 (Arithmetic- Recursive, Explicit, Sum (2 forms); Geometric-Recursive, Explicit, Sum (2 cases : finite, and infinite sum when convergent)

Keep in mind that Every series is a sum of a sequence. You must confirm whether a sequence/ series is arithmetic or geometric before you start using a formula.

Problems 1-6 fall in the same category since for all of them you have to find the explicit formula a_{n}.

1. Find the a_{n} given $a_{1}=-7$ and $d=-3$.
2. Find the nth term formula for $-15,-7,1, \ldots$.
3. Find a_{98} for $-8,-12,-16, \ldots$.
4. Write the following in Sigma Notation: $-6+3+12+21 \ldots$
5. Write the following in Sigma Notation: $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16} \ldots$.
6. Write the explicit and recursive formulas for $\frac{1}{2},-1,2,-4 \ldots$.

Problems 7-9 fall in the same category since you are finding the Sum.
7. Find S_{62} for $-1+12+25+38+\ldots$.
8. Evaluate $\sum_{k=1}^{56}-2 k+9$
9. Find S_{7} for the sequence given by $a_{n}=\frac{1}{16}(-2)^{n-1}$. (Use the formula)
10. Find n if $S_{n}=300$ for the arithmetic sequence $3,9,15,21, \ldots$ (now working backwards to find n)

Problems 11-12 fall in the same category since you are finding an infinite sum.
11. Find the S_{∞} for $4+2+1+\frac{1}{2}+\frac{1}{4}+\ldots$.
12. Determine whether convergent or divergent. If convergent find the sum.
a) $\frac{1}{4}+\frac{1}{2}+1+2+\ldots$.
b) $-3+1-\frac{1}{3}+\frac{1}{9}+\ldots$
13. Given the two terms in the arithmetic sequence, find the explicit formula. (use a system) $a_{12}=48$ and $a_{41}=193$
14. Evaluate $\sum_{k=0}^{4} 3^{k}-2 k-k^{2}$

