Calculus BC HW \# 3

For each of the following questions enter a T (true) or F (false), as appropriate, on the line at the beginning of the statement.
_(1) The function $\sin (x)$ is defined for all real values of x.
\qquad (2) For all real values x, it follows that $\sin ^{2}(x)=\cos ^{2}(x)-1$.
\qquad (3) For $-\frac{\pi}{2}<x<\frac{\pi}{2}$, it follows that $\tan (x) \cos (x)=\sin (x)$.
\qquad (4) For $0<x<\frac{\pi}{2}$, it follows that $\tan (x) \cot (x)=1$.
\qquad (5) For $-\frac{\pi}{2}<x<\frac{\pi}{2}$, it follows that $\cos (x) \sec (x)=1$.
\qquad (6) For $-\frac{\pi}{2}<x<\frac{\pi}{2}$, it follows that $\tan ^{2}(x)-\sec ^{2}(x)=1$.
\qquad (7) For $0<x<\pi$, it follows that $\csc (x) \sin (x)=1$.
\qquad (8) For all $x \in \mathbb{R}$, it follows that $0 \leq \sin (x) \leq 1$.
\qquad (9) The function $\sin ^{-1}(x)$ is defined for all real values of x.
\qquad (10) For $-\frac{\pi}{2}<x<\frac{\pi}{2}$, it follows that $1+\tan (x)>1$.
\qquad (11) For $-1 \leq x \leq 1$, it follows that $\sin \left(\sin ^{-1}(x)\right)=x$.
(12) The function $\tan ^{-1}(x)$ is defined for all real values of x.
(13) For $-\frac{\pi}{2}<x<\frac{\pi}{2}$, it follows that $1+\tan ^{2}(x)=\sec ^{2}(x)$.
\qquad (14) For all real values of x, it follows that $\sin \left(x+\frac{\pi}{2}\right)=\cos (x)$.
(15) For all real values of x, it follows that $\sin (x)+\cos (x)=$ $\cos (2 x)$.
(16) For all real values of x, it follows that $2 \sin (x) \cos (x)=$ $\sin (2 x)$.
_(17) For all real values of x, it follows that $1-2 \sin ^{2}(x)=$ $\cos (2 x)$.
_(18) For all real values of x, it follows that $2 \cos ^{2}(x)-1=$ $\cos (2 x)$.
(19) For all real values of θ, it follows that $\cos \left(\frac{\theta}{2}\right)=\frac{\cos (\theta)+1}{2}$.

For each of the following questions enter a T (true) or F (false), as appropriate, on the line at the beginning of the statement.
(7) Even though the function e^{x} is defined for all real numbers x, its inverse function $\ln x$, is defined for only positive real numbers.
(8) The function $e^{x}, x \in \mathbb{R}$, never assumes a negative value.
(9) The function $\log _{2} x, x \in \mathbb{R}$, never assumes the value 0 .
(10) Even though the function $\ln e^{x}$ is defined for all real numbers x, the function $e^{\ln x}$ is not defined for all real numbers x.
(11) The graphs of the functions $e^{x},-\infty<x<\infty$, and $\ln x, 0<x<\infty$, never intersect each other.
(12) $(4)^{\pi}=3^{\pi \log _{3} 4}$.
(13) Let x denote a positive real number. If a and b denote real numbers, then $\left(x^{a}\right)\left(x^{b}\right)=x^{a b}$.
(14) Let x denote a positive real number. If a and b denote real numbers, then $\left(x^{a}\right)^{b}=x^{a b}$.
(15) Let x denote a positive real number. If a denotes a real number, then $x^{-a}=\left(\frac{1}{x}\right)^{a}$.
(16) Let x and y denote positive real numbers with $x<y$. If a denotes a real number, then $x^{a}<y^{a}$.
\qquad (17) Let x denote a positive real number. If a and b denote real numbers, then $x^{a}+x^{b}=x^{a+b}$.

