Name

1.1 Solving Equations

Essential Question: How do you solve an equation in one variable?

Explore Solving Equations by Guess-and-Check or by Working Backward

An **equation** is a mathematical sentence that uses the equal sign = to show two expressions are equivalent. The expressions can be numbers, variables, constants, or combinations thereof.

Class

There are many ways to solve an equation. One way is by using a method called *guess-and-check*. A guessand-check method involves guessing a value for the variable in an equation and checking to see if it is the solution by substituting the value in the equation. If the resulting equation is a true statement, then the value you guessed is the solution of the equation. If the equation is not a true statement, then you adjust the value of your guess and try again, continuing until you find the solution.

Another way to solve an equation is by *working backward*. In this method, you begin at the end and work backward toward the beginning.

Solve the equation x - 6 = 4 using both methods.

Use the *guess-and-check* method to find the solution of the equation x - 6 = 4.

A	Guess 11 for <i>x</i> .	B	The value 11 is too high.
	x - 6 = 4		Guess 10 for <i>x</i> .
	$-6 \stackrel{?}{=} 4$		x - 6 = 4
	$\stackrel{?}{=} 4$		$-6 \stackrel{?}{=} 4$
	Is 11 the solution		<u>?</u> 4
	of $x - 6 = 4$?		Is 10 the solution
			of $x - 6 = 4$?
0	Use the <i>working backward</i> method to find the solution of the equation $x - 6 = 4$. 4 + 6 = Is this the value of <i>x</i> before taking away 6? $-6 \stackrel{?}{=} 4$		
Re	eflect		
1.	Discussion Which method of solving do you think	is mo	re efficient? Explain your answer.

Explain 1 Solving One-Variable Two-Step Equations

A **solution of an equation** is a value for the variable that makes the equation true. To determine the solution of an equation, you will use the Properties of Equality.

Properties of Equality					
Words	Numbers	Algebra			
Addition Property of Equality You can add the same number to both sides of an equation, and the statement will still be true.	3 = 3 3 + 2 = 3 + 2 5 = 5	a = b $a + c = b + c$			
Subtraction Property of Equality You can subtract the same number from both sides of an equation, and the statement will still be true.	7 = 7 7 - 5 = 7 - 5 2 = 2	a = b $a - c = b - c$			
Multiplication Property of Equality You can multiply both sides of an equation by the same number, and the statement will still be true.	$3 = 3$ $3 \cdot 4 = 3 \cdot 4$ $12 = 12$	$a = b$ $a \cdot c = b \cdot c$			
Division Property of Equality You can divide both sides of an equation by the same nonzero number, and the statement will still be true.	$15 = 15$ $\frac{15}{3} = \frac{15}{3}$ $5 = 5$	$a = b$ $\frac{a}{c} = \frac{b}{c},$ where $c \neq 0$			

Example 1 Solve the equation by using Properties of Equality.

 $(A) \quad 3x - 2 = 6$

Use the Addition Property of Equality.	3x - 2 + 2 = 6 + 2
Combine like terms.	3x = 8
Now use the Division Property of Equality.	$\frac{3x}{3} = \frac{8}{3}$
Simplify.	$x = \frac{8}{3}$

B $\frac{1}{2}z + 4 = 10$

Use the Subtraction Property of Equality.

Combine like terms.

Now use the Multiplication Property of Equality to multiply each side by 2.

Simplify.

© Houghton Mifflin Harcourt Publishing Company

Reflect

2. Discussion What is the goal when solving a one-variable equation?

Your Turn

Solve the equation by using Properties of Equality.

3. 5x - 10 = 20 **4.** $\frac{1}{3}x + 9 = 21$

Explain 2 Solving Equations to Define a Unit

One useful application of algebra is to use an equation to determine what a unit of measure represents. For instance, if a person uses the unit of time "score" in a speech and there is enough information given, you can solve an equation to find the quantity that a "score" represents.

Example 2 Solve an equation to determine the unknown quantity.

In 1963, Dr. Martin Luther King, Jr., began his famous "I have a dream" speech with the words "Five score years ago, a great American, in whose symbolic shadow we stand, signed the Emancipation Proclamation." The proclamation was signed by President Abraham Lincoln in 1863. But how long is a score? We can use algebra to find the answer.

Let *s* represent the quantity (in years) represented by a score.

s = number of years in a score

Calculate the quantity in years after President Lincoln signed the Emancipation Proclamation.

$$1963 - 1863 = 100$$

Dr. Martin Luther King, Jr. used "five score" to describe this length of time. Write the equation that shows this relationship.

	5s = 100
Use the Division Property of Equality to solve the equation.	$\frac{5s}{5} = \frac{100}{5}$
	s = 20

A score equals 20 years.

(A)

An airplane descends in altitude from 20,000 feet to 10,000 feet. A gauge at Radar Traffic Control reads that the airplane's altitude drops 1.8939 miles. How many feet are in a mile?

Let *m* represent the quantity (in feet) represented by a mile.

m = number of feet in a mile

Calculate the quantity in feet of the descent.

A gauge described this quantity as 1.8939 miles. Write the equation that shows this relationship.

20,000 -

Use the Division Property of Equality to solve the equation.

_

Round to the nearest foot.

There are 5280 feet in a mile.

Your Turn

Solve an equation to determine the unknown quantity.

- An ostrich that is 108 inches tall is 20 inches taller than 4 times the height of a kiwi. What is the height of a kiwi in inches?
- **6.** An emu that measures 60 inches in height is 70 inches less than 5 times the height of a kakapo. What is the height of a kakapo in inches?

🗩 Elaborate

7. How do you know which operation to perform first when solving an equation?

- **8.** How can you create an equivalent equation by using the Properties of Equality?
- **9.** When a problem involves more than one unit for a characteristic (such as length), how can you tell which unit is more appropriate to report the answer in?
- **10. Essential Question Check-In** Describe each step in a solution process for solving an equation in one variable.

Use the guess-and-check method to find the solution of the equation. Show your work.

Online Homework
Hints and Help
Extra Practice

1. 2x + 5 = 19

Use the *working backward* method to find the solution of the equation. Show your work.

2. 4y - 1 = 7

Solve each equation using the Properties of Equality. Check your solutions.

3. 4a + 3 = 11 **4.** 8 = 3r - 1

5. 42 = -2d + 66. 3x + 0.3 = 3.37. 15y + 31 = 618. 9 - c = -13

9.
$$\frac{x}{6} + 4 = 15$$
 10. $\frac{1}{3}y + \frac{1}{4} = \frac{5}{12}$

11.
$$\frac{2}{7}m - \frac{1}{7} = \frac{3}{14}$$
 12. $15 = \frac{a}{3} - 2$

13.
$$4 - \frac{m}{2} = 10$$
 14. $\frac{x}{8} - \frac{1}{2} = 6$

Justify each step.
15.
$$2x - 5 = -20$$

 $2x = -15$
 $x = -\frac{15}{2}$
16. $\frac{x}{3} - 7 = 11$
 $\frac{x}{3} = 18$
 $x = 6$
17. $\frac{9x}{4} = -9$
 $9x = -36$
 $x = -4$

© Houghton Mifflin Harcourt Publishing Company

18. In 2003, the population of Zimbabwe was about 12.6 million people, which is 1 million more than 4 times the population in 1950. Write and solve an equation to find the approximate population *p* of Zimbabwe in 1950.

19. Julio is paid 1.4 times his normal hourly rate for each hour he works over 30 hours in a week. Last week he worked 35 hours and earned \$436.60. Write and solve an equation to find Julio's normal hourly rate, *r*. Explain how you know that your answer is reasonable.

20. The average weight of the top 5 fish caught at a fishing tournament was 12.3 pounds. Some of the weights of the fish are shown in the table.

Top 5 Fish			
Caught by	Weight (lb)		
Wayne S.			
Carla P.	12.8		
Deb N.	12.6		
Vincente R.	11.8		
Armin G.	9.7		

What was the weight of the heaviest fish?

21. Paul bought a student discount card for the bus. The card allows him to buy daily bus passes for \$1.50. After one month, Paul bought 15 passes and spent a total of \$29.50. How much did he spend on the student discount card?

22. Jennifer is saving money to buy a bike. The bike costs \$245. She has \$125 saved, and each week she adds \$15 to her savings. How long will it take her to save enough money to buy the bike?

23. Astronomy The radius of Earth is 6378.1 km, which is 2981.1 km greater than the radius of Mars. Find the radius of Mars.

24. Maggie's brother is 3 years younger than twice her age. The sum of their ages is 24. How old is Maggie?

H.O.T. Focus on Higher Order Thinking

25. Analyze Relationships One angle of a triangle measures 120°. The other two angles are congruent. Write and solve an equation to find the measure of the congruent angles.

26. Explain the Error Find the error in the solution, and then solve correctly.

$$9x + 18 + 3x = 1$$
$$9x + 18 = -2$$
$$9x = -20$$
$$x = -\frac{20}{9}$$

27. Check for Reasonableness Marietta was given a raise of \$0.75 per hour, which gave her a new wage of \$12.25 per hour. Write and solve an equation to determine Marietta's hourly wage before her raise. Show that your answer is reasonable.

Lesson Performance Task

The formula p = 8n - 30 gives the profit *p* when a number of items *n* are each sold at \$8 and expenses totaling \$30 are subtracted.

- a. If the profit is \$170.00, how many items were bought?
- **b.** If the same number of items were bought but the expenses changed to \$40, would the profit increase or decrease, and by how much? Explain.