BC Classwork 8.7-8.10

For the following series, find the radius and the interval of convergence.

1. $\sum_{n=0}^{\infty} 6^{3+n}(x-2)^{n}$
2. $\sum_{n=1}^{\infty}(3 n)!(5 x+21)^{n}$
3. $\sum_{n=0}^{\infty} \frac{(8 x-24)^{n}}{4^{1+2 n}(3 n)}$

Find a power series representation for each of the following:
4. $f(x)=\frac{x^{2}}{9-\sqrt{x}}$
5. $f(x)=\frac{6 x}{4+3 x^{7}}$
6. Use the Taylor series for $\cos (x)$ to derive the Taylor series for $f(x)=x^{2} \cos \left(3 x^{2}\right)$ about $x=0$.
7. Find a Taylor series for the given function at the given point.

$$
f(x)=2+3 x+4 x^{2} \text { about } x=-5
$$

For problems 8 \& 9 write out the first three nonzero terms of the Taylor series for the given function about the given point. Your answer should be in the following form with a plugged in (you may need more terms to get 3 that are not zero...),

$$
f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots
$$

8. $f(x)=\sin (6+2 x)+\sin (\pi x)$ about $x=-3$
9. $f(x)=e^{-x^{2}} \cos (4 x)$ about $x=0 \quad$ (Use only the common series that you have memorized)
