Calculus BC CW 2.5-2.6

1. In the following assume that x, y, and z are all functions of t. Given $x=4, y=-2, z=1, x^{\prime}=9$ and $y^{\prime}=-3$, determine z^{\prime} for the following equation: $x(1-y)+5 z^{3}=y^{2} z^{2}+x^{2}-3$.
2. For a certain rectangle the length of one side is always three times the length of the other side.
(a) If the shorter side is decreasing at a rate of $2 \mathrm{in} / \mathrm{min}$, at what rate is the longer side decreasing?
(b) At what rate is the enclosed area decreasing when the shorter side is 6 inches long and is decreasing at a rate of $2 \mathrm{in} / \mathrm{min}$?
3. A person is standing 350 feet away from a model rocket that is fired straight up into the air at a rate of $15 \mathrm{ft} / \mathrm{sec}$. At what rate is the distance between the person and the rocket increasing 1 minute after liftoff?
4. Two people are at an elevator. At the same time one person starts to walk away from the elevator at a rate of $2 \mathrm{ft} / \mathrm{sec}$, and the other person starts going up in the elevator at a rate of $7 \mathrm{ft} / \mathrm{sec}$. At what rate is the distance between the two people changing 15 seconds later?
5. The angle of elevation is the angle formed by a horizontal line and a line joining the observer's eye to an object above the horizontal line. A person is 500 feet away from the launch point of of a hot air balloon. The hot air balloon is starting to come back down at a rate of $15 \mathrm{ft} / \mathrm{sec}$. At what rate is the angle of elevation, θ, changing when the hot air balloon is 200 feet above the ground?

