
- 1. The graph to the right shows the velocity, v(t), of a particle moving along the x-axis for $0 \le t \le 11$. It consists of a semicircle and two line segments. Use the graph and your knowledge of motion to answer the following questions.
- a. At what time *t*, $0 \le t \le 11$, is the speed of the particle the greatest?
- b. At which of the times, t = 2, t = 6, t = 9, is the acceleration of the particle greatest? Explain your answer.
- c. Over what time intervals is the particle moving to the left? Explain your answer.
- d. Over what time intervals is the speed of the particle decreasing? Explain your answer.
- e. Find the total distance traveled by the particle over the time interval $0 \le t \le 11$.
- f. Find the value of $\int_{0}^{11} v(t) dt$ and explain the meaning of this integral in the context of the problem.
- g. If the initial position of the particle is x(0) = 2, find the position of the particle at time t = 11.
- 2. The table below gives values for the velocity and acceleration of a particle moving along the x-axis for selected values of time *t*. Both velocity and acceleration are differentiable functions of time *t*. The velocity is decreasing for all values of *t*, $0 \le t \le 10$. Use the table to answer questions that follow.

Time, t	0	2	6	10
Velocity, $v(t)$	5	3	-1	-8
Acceleration, $a(t)$	0	-1	-3	-5

- a. Is there a time *t* when the particle is at rest? Explain your answer.
- b. What is the speed of the particle at t = 6?
- c. At what time indicated in the table is the speed of the particle decreasing? Explain your answer.
- d. Determine the value of $\int_{0}^{10} a(t) dt$. Explain the meaning of the definite integral in the context of the problem.

