1. The graph to the right shows the velocity, $v(t)$, of a particle moving along the x -axis for $0 \leq \mathrm{t} \leq 11$. It consists of a semicircle and two line segments. Use the graph and your knowledge of motion to answer the following questions.
a. At what time $t, 0 \leq t \leq 11$, is the speed of the particle the greatest?
b. At which of the times, $t=2, t=6, t=9$, is the acceleration of the particle greatest? Explain your answer.

c. Over what time intervals is the particle moving to the left? Explain your answer.
d. Over what time intervals is the speed of the particle decreasing? Explain your answer.
e. Find the total distance traveled by the particle over the time interval $0 \leq t \leq 11$.
f. Find the value of $\int_{0}^{11} v(t) d t$ and explain the meaning of this integral in the context of the problem.
g. If the initial position of the particle is $x(0)=2$, find the position of the particle at time $t=11$.
2. The table below gives values for the velocity and acceleration of a particle moving along the x-axis for selected values of time t. Both velocity and acceleration are differentiable functions of time t. The velocity is decreasing for all values of $t, 0 \leq \mathrm{t} \leq 10$. Use the table to answer questions that follow.

Time, t	0	2	6	10
Velocity, $v(t)$	5	3	-1	-8
Acceleration, $a(t)$	0	-1	-3	-5

a. Is there a time t when the particle is at rest? Explain your answer.
b. What is the speed of the particle at $t=6$?
c. At what time indicated in the table is the speed of the particle decreasing? Explain your answer.
d. Determine the value of $\int_{0}^{10} a(t) d t$. Explain the meaning of the definite integral in the context of the problem.

