For \#'s 1 and 2, Find the component form and magnitude for:

2) Initial point of $(-3,7)$

Terminal point of $(1,5)$

For \#'s 3-6, Given vectors \mathbf{u}, \mathbf{v}, and $\mathbf{w}: \quad u=\langle-2,4\rangle ; \quad v=\langle 3,-1\rangle ; \quad w=\langle 5,3\rangle$. Find:

3$) \mathbf{v}+2 \mathbf{w}$	4) $3 \mathbf{u}-\mathbf{w}$
5$) 3 \mathbf{v} \cdot \mathbf{w}$	$6)(\mathbf{v} \cdot \mathbf{u}) \mathbf{w}$

For \#'s 7 and 8, find a unit vector, \mathbf{u}, in the direction of the given vector.
7) $v=\langle-3,5\rangle$
8) $w=2 i-3 j$
9) Find the vector \mathbf{v} with the given magnitude and the same direction as \mathbf{u}.

$$
\|v\|=9 \quad u=\langle 5,6\rangle
$$

10) Find the magnitude and direction angle of vector \mathbf{v}.

$$
\mathbf{v}=\frac{\sqrt{3}}{2} i-\frac{1}{2} j
$$

11) Find the component form of \mathbf{v} given its magnitude and the angle it makes with the positive x -axis.

$$
\|v\|=\frac{8}{3} \quad \theta=150^{\circ}
$$

12) Find the angle between the vectors (Write your answer in terms of cosine inverse).

$$
\begin{aligned}
& u=7 i-2 j \\
& v=-8 i+6 j
\end{aligned}
$$

13) Determine whether \mathbf{u} and \mathbf{v} are orthogonal, parallel, or neither.

$$
\begin{aligned}
& u=3 i+4 j \\
& v=-9 i-12 j
\end{aligned}
$$

