Name: \qquad Date: \qquad Pd: \qquad
Find the derivative of the function. Simplify your answer completely. Must be turned in before leaving.
\(\left.$$
\begin{array}{|l|l|}\hline \text { 1. } y=\frac{1}{x^{8}} & \text { 2. } f(x)=\left(-2 x^{2}+\tan 2 x\right)^{3} \\
\hline \begin{array}{l}\text { 3. } f(x)=\sqrt{x}-6 \sqrt[3]{x} \\
\text { (Put over common denominator) }\end{array}
$$ \& 4. y=\frac{x^{3}+3 x+2}{x^{2}-1} \\
\hline 5. f(t)=3 t^{2} \sin 2 t \& 6. f(x)=x^{4}\left(1-\frac{2 x+1}{x^{2}}\right) \\

(Simplify first!)\end{array}\right]\)| 8. $f(t)=\sec ^{4}\left(2 t^{2}-t\right)$ |
| :--- |
| 7. $f(t)=5 \csc (2 t)^{2}$ |

Find the slope of the tangent line at the given x-value. Use the information to write the equation of the tangent line for the given x value.
10) $\quad f(x)=x^{4}-3 x^{2}+2 ; \quad x=2$

Use the following for \#'s 11-13

11. On what interval is the particle moving to the right? (estimate/round as best possible)
12. Describe the particle's acceleration at $\mathrm{t}=11$ seconds? How do you know?
13. Is the particle's speed increasing or decreasing at $t=13$ seconds? Justify your answer by incorporating the relationship between velocity, acceleration, and speed.

