Name: _____ Da

_____ Date:_____ Pd:_____

Find the derivative of the function. Simplify your answer completely. Must be turned in before leaving.

		1
1.	<i>y</i> =	$\overline{x^8}$

2. $f(x) = (-2x^2 + \tan 2x)^3$

3.
$$f(x) = \sqrt{x} - 6\sqrt[3]{x}$$

(Put over common denominator)

$$4. \quad y = \frac{x^3 + 3x + 2}{x^2 - 1}$$

$$5. \quad f(t) = 3t^2 \sin 2t$$

6. $f(x) = x^4 \left(1 - \frac{2x+1}{x^2} \right)$

(Simplify first!)

$$_{7.} f(t) = 5\csc(2t)^2$$

8. $f(t) = \sec^{4}\left(2t^2 - t\right)$

9.
$$f(x) = \sqrt{x-1} (x^2+4)^2$$

Find the slope of the tangent line at the given x-value. Use the information to write an equation of the tangent line at the given point.

10)
$$f(x) = x^4 - 3x^2 + 2;$$
 $x = 2$

Use the following for #'s 11 - 13

- 11. On what interval is the particle moving to the right? (estimate/round as best possible)
- 12. At t = 11, is the acceleration of the particle positive or negative?
- 13. Describe the particles acceleration at t = 17 seconds.