Write each in its equivalent logarithmic or exponential form:

1. $3^{7}=2187$
2. $\log _{4} 1024=5$

For \#'s 3-12, solve for x . Answers have to be simplified. No Calculator (Answers may have log, In, etc.) Hint: Keep exponential rules in mind! Box your FINAL ANSWER please.

3. $\log _{x} 144=-2$	4. $2^{x}=55$
5. $\quad 81^{x-1}=\frac{1}{27}$	6. $\log _{5} x=4$
7. $16^{5 x}=64^{x+7}$	8. $\left(\frac{1}{32}\right)^{2 x}=64$
9. $6 e^{10 x-8}-4=32$	10. $8(10)^{7 x-6}-8=56$
11. Solve for x . $\log _{5} 5^{x+1}=\log _{5} 625$	12. Solve for x . Check for extraneous solutions. $\log _{2} x+\log _{2}(x+1)+\log _{2} 2=2$
13. Express as a single log of a single argument $3 \log x-\frac{1}{2} \log y+\frac{2}{3} \log z$	14. Use the laws of logarithms to expand the following single log: $\log _{3} \frac{x^{5} y}{z^{2}}$

