Write each in its equivalent logarithmic or exponential form:

1.
$$3^7 = 2187$$
 2. $\log_4 1024 = 5$

Graph each function. Find the asymptote. Tell how the graph is transformed from the graph of its parent function.

For #'s 5-14, solve for x. Box your FINAL ANSWER please.

5. $\log_x 144 = -2$	6. $2^x = 55$
7. $81^{x-1} = \frac{1}{27}$	8. $\log_5 x = 4$
9. $16^{5x} = 64^{x+7}$	$10. \left(\frac{1}{32}\right)^{2x} = 64$
11. $6e^{10x-8} - 4 = 32$	12. $8(10)^{7x-6} - 8 = 56$
13. Solve for x. $\log_5 5^{x+1} = \log_5 625$	14. Solve for x. Check for extraneous solutions. $\log_2 x + \log_2(x+1) + \log_2 2 = 2$
15. Express as a single log of a single argument: $3\log x - \frac{1}{2}\log y + \frac{2}{3}\log z$	16. Use the laws of logarithms to expand the following single log: $\log_3 \frac{x^5 y}{z^2}$