a) For each problem, describe the transformation(s) that is/are taking place.
b) Determine what happens to the point $(-6,5)$ after the transformation(s)

1. $g(x)=f(x+2)-4$
2. $g(x)=f\left(-\frac{1}{2} x\right)$
3. $g(x)=-2 f(x-1)+5$

Given: $f(x)=x+3 ; \quad g(x)=3 x^{2}-x ; \quad h(x)=3 x$
4. $(g \circ f)(x)=$
5. $(f \circ g)(-2)=$
6. $(h-g)(-1)=$
7. $\left(\frac{f}{h}\right)(-6)=$
8. A function and its inverse have symmetry with respect to the line : \qquad
9. Find $f^{-1}(x)$ given $f(x)=2 x^{3}-1$
10. Determine algebraically whether or not $f(x)=2 x+1$ and $g(x)=\frac{1}{2} x-1$ are inverses of one another.

