For the following, estimate answers to the nearest tenths when necessary.

1. Suppose the given graph is the graph of $\mathbf{f}^{\prime}(\mathbf{x})$.
a) Determine the intervals where $f(x)$ is increasing.
b) Determine the intervals where $f(x)$ is concave up.
2. Suppose the given graph is the graph of $f(\mathbf{x})$.
a) Determine where the graph is concave up.
b) Determine where the graph is decreasing.

$f^{\prime}(x)$

$f(x)$
3. Suppose the given graph is the graph of $\mathbf{f}^{\prime \prime}(\mathbf{x})$.
a) Determine where the graph of $f(x)$ is concave down.
b) Suppose $x=-4$ is a critical number, according to the $2^{\text {nd }}$ Derivative

\mathbf{f}^{\prime} (x) test for relative extrema, is it a relative max or relative min? Why?
4. Find the absolute extrema of $f(x)=2 x^{3}+3 x^{2}-12 x+4$ on $[-4,2]$.
A. absolute max at $\mathrm{x}=-2$; absolute \min at $\mathrm{x}=1$
B. absolute max at $x=2$; absolute \min at $x=-4$
C. absolute max at $x=-4$; absolute min at $x=-2$
D. absolute max at $x=-2$; no absolute min
E. none of the above
5. Which of the following is true about $f(x)=x(6-x)^{\frac{2}{3}}$? $\quad f(x)$ has:
A. no relative extrema
B. 1 relative extrema (a relative max)
C. 2 relative extrema (a relative max and a relative min)
D. 1 relative extrema (a relative min)
E. none of the above
