
Exam Review Day 1(Non-Calculator)

1.	The graph of a twice-differential	le function	f is	shown	in the	figure	above.
Wŀ	nich of the following is true?						

A)
$$f(1) < f'(1) < f''(1)$$

B)
$$f(1) \le f$$
 " $(1) \le f$ " (1)

C)
$$f'(1) < f(1) < f''$$

D)
$$f$$
 '' (1) $\leq f$ (1) $\leq f$ '(1)

A)
$$f(1) < f'(1) < f''(1)$$
B) $f(1) < f''(1) < f'(1)$
D) $f'''(1) < f(1) < f''(1) < f'(1)$
E) $f'''(1) < f'(1) < f(1)$

2. An equation of the line tangent to the graph of $y = x + \cos x$ at the point (0,1) is

A)
$$y = 2x + 1$$

B)
$$y = x + 1$$

C)
$$y = x$$

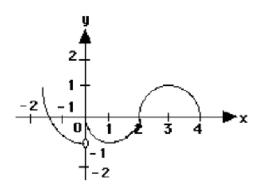
D)
$$y = x - 1$$

E)
$$y = 0$$

3. If $f''(x) = x(x+1)(x-2)^2$, then the graph of f has inflection points when x =

4. The minimum value of $f(x) = x^2 + \frac{2}{x}$ on the interval $\frac{1}{2} \le x \le 2$ is

A)
$$\frac{1}{2}$$


5. If the continuous and differentiable function $f(x) = \begin{cases} ax^3 - 6x; & x \le 1 \\ bx^2 + 4; & x > 1 \end{cases}$ then a = a = a = a = a

$$^{\circ})_{-14}$$

6. A particle moves along a line according to the distance formula $s(t) = 2t^2 - 6t + 17$. The particle is at rest when t =

A) 1

C) 2

- 7. The graph of the function f shown in the figure above has a vertical tangent at the point (2,0) and horizontal tangents at the points (1,-1) and (3,1). For what values of $x, -2 \le x \le 4$, is f not differentiable?
- A) 0 only

B) 0 and 2 only

C) 1 and 3 only

- D) 0, 1, and 3 only
- E) 0, 1, 2, and 3
- 8. $\lim_{x \to \infty} \frac{3x^2 4}{2 7x x^2} =$
- A) 3

B) 1

(C) -3

D) ∞

- E) 0
- 9. The total number of relative maximum and minimum points of the function whose derivative is $f'(x) = x^2(x+1)^3(x-4)^3$ is B) 1
- A) 0

C) 2

D) 3

- 10. The slope of the curve $y^2 xy 3x = 1$ at the point (0,1) is
- A) -1

B) -2

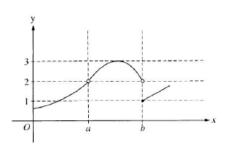
C) 1

D) 2

- E) -3
- 11. If $f(x) = \cos x \sin 3x$, then $f'(\frac{\pi}{6})$ is equal to
- A) $\frac{1}{2}$

C) 0

D) 1

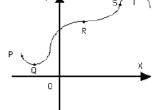

- 12. A particle moves in a straight line with velocity $v(t) = t^2$. How far does the particle move between times t = 1 and t = 2?
- A) $\frac{1}{3}$

B) $\frac{7}{3}$

C) 3

D) 7

E) 8



- The graph of the function f is shown in the figure above. Which of the following statements about
- f is true?
- A) $\lim_{x \to a} f(x) = \lim_{x \to b} f(x)$

D) $\lim_{x \to b} f(x) = 1$

- B) $\lim_{x\to a} f(x) = 2$ E) $\lim_{x\to a} f(x)$ does not exist.
- 14. At which point on the following graph do both $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ equal zero?
- A) P D) S

B) Q E) T

- 15. What is the x-coordinate of the point of inflection on the graph of $y = \frac{1}{3}x^3 + 5x^2 + 24$?
- A) 5

B) 0

C) $-\frac{10}{3}$

D) -5

- E) -10
- 16. $\int_{0}^{1} (3x-2)^2 dx =$
- A) -7/3

B) -7/9

C) 1/9

D) 1

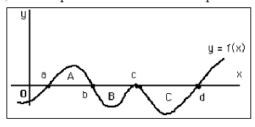
- E) 3
- 17. The radius r of a sphere is increasing at the uniform rate of 0.3 inches per second. At the instant when the surface area S becomes 100π square inches, what is the rate of increase, in cubic inches per second, in the volume V?
- A) 10π

B) 12π

C) 22.5π

D) 25π

- E) 30π
- 18. The x-coordinate of the absolute max. of $f(x) = 3x^3 \frac{9}{2}x^2$ on [-2,2] is:
- A) 0


C) 1

D) -2

 $E)\frac{1}{2}$

- 19. If, for all x, $f'(x) = (x-2)^4(x-1)^3$, it follows that the function f has
 - A) a relative minimum at x = 1
 - B) a relative maximum at x = 1
 - C) both a relative minimum at x = 1 and a relative maximum at x = 2
 - D) neither a relative maximum nor a relative minimum
 - E) relative minima at x = 1 and x = 2
- 20. The following graph represents y = f(x). If A, B, and C represent the areas of the respective

enclosed regions, then $\int_{d}^{d} (-f(x)) dx =$

A) A - B - C

B) B + C - A

C) A - (B - C)

D) A + B + C

- E) B-C-A
- $21. \frac{d}{dx} \left(\int_{0}^{x^2} \sin(t^3) dt \right) =$
- A) $-\cos(x^6)$

B) $\sin(x^3)$

C) $\sin(x^6)$

D) $2x\sin(x^3)$

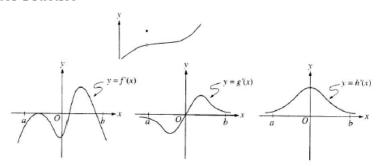
- E) $2x\sin(x^6)$
- 22. The function f is given by $f(x) = x^4 + x^2 2$. On which of the following intervals is f increasing?
- A) $\left(-\frac{1}{2},\infty\right)$

B) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

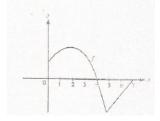
C) (0,∞)

D) (-∞,0)

- E) $\left(-\infty, -\frac{1}{\sqrt{2}}\right)$
- 23. The graph of y = h(x) is shown below. Which of the following could be the graph of y = h'(x)?


(c)

Calculator Practice

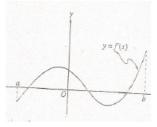


- The graphs of the derivatives of the functions f, g, and h are shown above. Which of the functions f, g, or h have Ta relative maximum on the open interval a < x < b?
- (A) f only

- (B) g only (C) h only (D) f and g only (E) f,g, and h
- A particle moves along the x-axis so that at any time t≥ 0, its velocity is given by $v(t) = 3 + 4.1\cos(0.9t)$. What is the acceleration of the particle at time t = 4?
- (A) -2.016
- (B) -0.677
- (C) 1.633
- (D) 1.814
- (E) 2.978
- 3. The first derivative of the function f is given by $f'(x) = \frac{\cos^2 x}{x} \frac{1}{5}$. How many critical values does f have on the open interval (0,10)?
- (A) One
- (B) Three
- (C) Four
- (D) Five
- (E) Seven
- 4. Let f be the function given by f(x) = |x|. Which of the following statements about f are true?
 - I. f is continuous at x = 0.
 - II. f is differentiable at x = 0.
 - f has an absolute minimum at x = 0. III.
- (A) I only
- (B) II only (C) III only (D) I and III only
- (E) II and III only

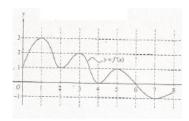
- 5. If $a \neq 0$, then $\lim_{x \to a} \frac{x^2 a^2}{x^4 a^4}$ is
- (A) $\frac{1}{a^2}$ (B) $\frac{1}{2a^2}$ (C) $\frac{1}{6a^2}$ (D) 0
- (E) nonexistent
- 6. The function f whose graph is shown has f' = 0 at x =
- (A) 2 only

- (B) 2 and 5 only
- (C) 4 and 7 only
- (D) 2, 4, and 7


7.	A differentiable function	f has values show. Estimate f'	1.5)

х	1.0	1.2	1.4	1.6
f(x)	8	10	14	22

- (A) 8
- (B) 12
- (C) 18
- (D) 40
- (E) 80


8. The graph of f', is shown in the figure. Which of the following describes all relative extrema of f on the open interval (a,b)

- (A) One relative maximum and two relative minima
- (B) Two relative maxima and one relative minimum
- (C) Three relative maxima and one relative minimum
- (D) One relative maximum and three relative minima
- (E) Three relative maxima and two relative minima

For Question #9-10.

The function f is defined on the closed interval [0,8]. The graph of the derivative f' is shown below.

9. How many points of inflection does the graph of f have?

- (A) Two
- (B) Three
- (C) Four
- (D) Five
- (E) Six

10. At what value of x does the absolute minimum of f occur?

- (A) 0
- (B) 2
- (C) 4
- (D) 6
- (E) 8

11. The graph of the function $y = x^3 + 6x^2 + 7x - 2\cos x$ changes concavity at $x = x^3 + 6x^2 + 7x - 2\cos x$

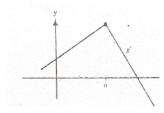
- (A) -1.58
- (B) -1.63
- (C) -1.67
- (D) -1.89
- (E) -2.33

12. Which of the following is an equation of the line tangent to the graph of $f(x) = x^4 + 2x^2$ at the point where f'(x) = 1?

(B)
$$y = x + 7$$

(C)
$$y = x + 0.763$$
 (D) $y = x - 0.122$ (E) $y = x - 2.146$

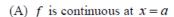
(D)
$$v = x - 0.122$$


(E)
$$v = x - 2.146$$

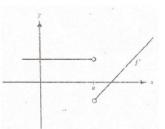
13. The graph of g' is shown here. Which of the following statements are true of g at x = a

I. g is continuous

II. g is differentiable


III. g is increasing

- (A) I only
- (B) III only
- (C) I and II only
- (D) II and III only


(E) I, II, and III

14. A function f has the derivative shown. Which of the following statements must be false?

- (C) f has a vertical asymptote at x = a
- (D) f has a jump discontinuity at x = a
- (E) f has a removable discontinuity at x = a

- 15. If g is a differentiable function such that g(x) < 0 for all real numbers x and if $f'(x) = (x^2 4)g(x)$, which of the following is true?
 - f has a relative maximum at x = -2 and a relative minimum at x = 2(A)
 - f has a relative maximum at x = 2 and a relative minimum at x = -2(B)
 - f has relative minima at x = -2 and at x = 2. (C)
 - (D) f has relative maxima at x = -2 and at x = 2.
 - It cannot be determined if f has any relative extrema. (E)
- 16. Let f be a function that is differentiable on the open interval (1,10). If f(2) = -5, f(5) = 5, and f(9) = -5, which of the following must be true?
 - f has at least 2 zeros.
 - The graph of f has at least one horizontal tangent.
 - For some c, 2 < c < 5, f(c) = 3.
- (A) None
- (B) I only
- (C) I and II only
- (D) I and III only
- (E) I, II, and III
- 17. If a particle moves on a line according to a law $s = t^5 + 2t^3$ then the number of times it reverses direction is:
- (A) 4
- (B) 3
- (C) 2
- (D) 1
- (E) 0