Review Exercise Set 20

Exercise 1: Use Gaussian elimination to find the solution for the given system of equations.

$$
\begin{aligned}
& 3 x+y-z=1 \\
& x-y+z=-3 \\
& 2 x+y+z=0
\end{aligned}
$$

Exercise 2: Use Gaussian elimination to find the solution for the given system of equations.

$$
\begin{aligned}
& 2 x+5 y=9 \\
& x+2 y-z=3 \\
& -3 x-4 y+7 z=1
\end{aligned}
$$

Review Exercise Set 20 Answer Key

Exercise 1: Use Gaussian elimination to find the solution for the given system of equations.

$$
\begin{aligned}
& 3 x+y-z=1 \\
& x-y+z=-3 \\
& 2 x+y+z=0
\end{aligned}
$$

Setup the augmented matrix

$$
\left[\begin{array}{rrr:r}
3 & 1 & -1 & 1 \\
1 & -1 & 1 & -3 \\
2 & 1 & 1 & 0
\end{array}\right]
$$

Perform row operations to reduce the matrix

$$
\left.\begin{array}{l}
{\left[\begin{array}{rrr:r}
1 & -1 & 1 & -3 \\
3 & 1 & -1 & 1 \\
2 & 1 & 1 & 0
\end{array}\right] R_{1} \leftrightarrow R_{2}} \\
{\left[\begin{array}{rrr:r}
1 & -1 & 1 & -3 \\
0 & 4 & -4 & 10 \\
2 & 1 & 1 & 0
\end{array}\right]-3 R_{1}+R_{2} \rightarrow R_{2}} \\
{\left[\begin{array}{ccc:r}
1 & -1 & 1 & -3 \\
0 & 4 & -4 & 10 \\
0 & 3 & -1 & 6
\end{array}\right]-2 R_{1}+R_{3} \rightarrow R_{3}} \\
{\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -1 \\
0 & 3 & -1
\end{array} \frac{5}{2}\right.}
\end{array}\right] \quad R_{2} \div 4 \rightarrow R_{2}{ }_{2}
$$

Exercise 1 (Continued):

$$
\begin{aligned}
& {\left[\begin{array}{rrr:r}
1 & 0 & 0 & -\frac{1}{2} \\
0 & 1 & -1 & \frac{5}{2} \\
0 & 0 & 1 & -\frac{3}{4}
\end{array}\right] R_{3} \div 2 \rightarrow R_{3}} \\
& {\left[\begin{array}{rrr:r}
1 & 0 & 0 & -\frac{1}{2} \\
0 & 1 & 0 & \frac{7}{4} \\
0 & 0 & 1 & -\frac{3}{4}
\end{array}\right] \quad R_{3}+R_{2} \rightarrow R_{2}}
\end{aligned}
$$

$$
\text { The solution set }(x, y, z) \text { is }\left(-\frac{1}{2}, \frac{7}{4},-\frac{3}{4}\right)
$$

Exercise 2: Use Gaussian elimination to find the solution for the given system of equations.

$$
\begin{aligned}
& 2 x+5 y=9 \\
& x+2 y-z=3 \\
& -3 x-4 y+7 z=1
\end{aligned}
$$

Setup the augmented matrix

$$
\left[\begin{array}{rrr:r}
2 & 5 & 0 & 9 \\
1 & 2 & -1 & 3 \\
-3 & -4 & 7 & 1
\end{array}\right]
$$

Perform row operations to reduce the matrix

$$
\begin{aligned}
& {\left[\begin{array}{rrr:r}
1 & 2 & -1 & 3 \\
2 & 5 & 0 & 9 \\
-3 & -4 & 7 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrr:r}
1 & 2 & -1 & 3 \\
0 & 1 & 2 & 3 \\
-3 & -4 & 7 & 1
\end{array}\right]-2 R_{1}+R_{2} \rightarrow R_{2}} \\
& {\left[\begin{array}{rrr:r}
1 & 2 & -1 & 3 \\
0 & 1 & 2 & 3 \\
0 & 2 & 4 & 10
\end{array}\right] 3 R_{1}+R_{3} \rightarrow R_{3}}
\end{aligned}
$$

Exercise 2 (Continued):

$$
\begin{aligned}
& {\left[\begin{array}{rrr:r}
1 & 0 & -5 & -3 \\
0 & 1 & 2 & 3 \\
0 & 2 & 4 & 10
\end{array}\right]-2 R_{2}+R_{1} \rightarrow R_{1}} \\
& {\left[\begin{array}{rrr:r}
1 & 0 & -5 & -3 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 4
\end{array}\right]-2 R_{2}+R_{3} \rightarrow R_{3}}
\end{aligned}
$$

$0 \neq 4$ so this system is inconsistent and has no solution.

Exercise 3: The circle given by the equation $x^{2}+y^{2}+a x+b y+c=0$ passes through the points $(-2,0)$, $(-1,7)$, and $(5,-1)$. Find a, b, and c.

Substitute the given points into the equation to find the system of equations

$$
\begin{aligned}
& x^{2}+y^{2}+a x+b y+c=0 \\
& (-2)^{2}+(0)^{2}+a(-2)+b(0)+c=0 \\
& 4-2 a+c=0 \\
& -2 a+c=-4 \\
& \\
& x^{2}+y^{2}+a x+b y+c=0 \\
& (-1)^{2}+(7)^{2}+a(-1)+b(7)+c=0 \\
& 1+49-a+7 b+c=0 \\
& -a+7 b+c=-50 \\
& x^{2}+y^{2}+a x+b y+c=0 \\
& (5)^{2}+(-1)^{2}+a(5)+b(-1)+c=0 \\
& 25+1+5 a-b+c=0 \\
& 5 a-b+c=-26 \\
& -2 a+c=-4 \\
& -a+7 b+c=-50 \\
& 5 a-b+c=-26
\end{aligned}
$$

Setup the augmented matrix

$$
\left[\begin{array}{rrr:r}
-2 & 0 & 1 & -4 \\
-1 & 7 & 1 & -50 \\
5 & -1 & 1 & -26
\end{array}\right]
$$

