Review Exercise Set 20

Exercise 1: Use Gaussian elimination to find the solution for the given system of equations.

3x + y - z = 1x - y + z = -3 2x + y + z = 0

Exercise 2: Use Gaussian elimination to find the solution for the given system of equations.

2x + 5y = 9 x + 2y - z = 3 -3x - 4y + 7z = 1

Review Exercise Set 20 Answer Key

Exercise 1: Use Gaussian elimination to find the solution for the given system of equations.

3x + y - z = 1x - y + z = -32x + y + z = 0

Setup the augmented matrix

3	1	-1	1
1	-1	-1 1 1	-3
3 1 2	1	1	1 -3 0

Perform row operations to reduce the matrix

1 3 2	$ \begin{array}{c cccc} -1 & 1 & -3 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{array} \end{bmatrix} R_1 \leftrightarrow R_2 $
1 0 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 0 0	$ \begin{bmatrix} -1 & 1 & -3 \\ 4 & -4 & 10 \\ 3 & -1 & 6 \end{bmatrix} -2R_1 + R_3 \to R_3 $
$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c cccc} -1 & 1 & -3 \\ 1 & -1 & \frac{5}{2} \\ 3 & -1 & 6 \end{array} \end{bmatrix} R_2 \div 4 \to R_2 $
$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$ \begin{array}{c cccc} 0 & 0 & -\frac{1}{2} \\ 1 & -1 & \frac{5}{2} \\ 3 & -1 & 6 \end{array} \end{bmatrix} R_2 + R_1 \rightarrow R_1 $
$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$ \begin{array}{c cccc} 0 & 0 & -\frac{1}{2} \\ 1 & -1 & \frac{5}{2} \\ 0 & 2 & -\frac{3}{2} \end{array} \\ -3R_2 + R_3 \rightarrow R_3 $

Exercise 1 (Continued):

$$\begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & -1 & | & \frac{5}{2} \\ 0 & 0 & 1 & | & -\frac{3}{4} \end{bmatrix} R_3 \div 2 \longrightarrow R_3$$
$$\begin{bmatrix} 1 & 0 & 0 & | & -\frac{1}{2} \\ 0 & 1 & 0 & | & \frac{7}{4} \\ 0 & 0 & 1 & | & -\frac{3}{4} \end{bmatrix} R_3 \div R_2 \longrightarrow R_2$$
The solution set (x, y, z) is $\left(-\frac{1}{2}, \frac{7}{4}, -\frac{3}{4} \right)$

Exercise 2: Use Gaussian elimination to find the solution for the given system of equations.

2x + 5y = 9 x + 2y - z = 3 -3x - 4y + 7z = 1

Setup the augmented matrix

2	5	0	9
1	2	-1	3
-3	-4	7	1

Perform row operations to reduce the matrix

$$\begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 5 & 0 & 9 \\ -3 & -4 & 7 & 1 \end{bmatrix}^{R_1} \leftrightarrow R_2$$
$$\begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & 1 & 2 & 3 \\ -3 & -4 & 7 & 1 \end{bmatrix} -2R_1 + R_2 \rightarrow R_2$$
$$\begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 4 & 10 \end{bmatrix}_{3R_1} + R_3 \rightarrow R_3$$

Exercise 2 (Continued):

$$\begin{bmatrix} 1 & 0 & -5 & | & -3 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 4 & 10 \end{bmatrix} \xrightarrow{-2R_2 + R_1 \to R_1} R_1$$

$$\begin{bmatrix} 1 & 0 & -5 & | & -3 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 4 \end{bmatrix} \xrightarrow{-2R_2 + R_3 \to R_3}$$

 $0 \neq 4$ so this system is inconsistent and has no solution.

Exercise 3: The circle given by the equation $x^2 + y^2 + ax + by + c = 0$ passes through the points (-2, 0), (-1, 7), and (5, -1). Find a, b, and c.

Substitute the given points into the equation to find the system of equations

$$x^{2} + y^{2} + ax + by + c = 0$$

(-2)² + (0)² + a(-2) + b(0) + c = 0
4 - 2a + c = 0
-2a + c = -4
$$x^{2} + y^{2} + ax + by + c = 0$$

(-1)² + (7)² + a(-1) + b(7) + c = 0
1 + 49 - a + 7b + c = 0
-a + 7b + c = -50
$$x^{2} + y^{2} + ax + by + c = 0$$

(5)² + (-1)² + a(5) + b(-1) + c = 0
25 + 1 + 5a - b + c = 0
5a - b + c = -26
-2a + c = -4
-a + 7b + c = -50
5a - b + c = -26

Setup the augmented matrix

[-2	0	1	-4]
-1	7	1	-50
5	-1	1	-26