Multiplying \& Dividing Complex Numbers

$z_{1}=7-2 i$
$=z_{4}=3\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$

$$
z_{2}=-1+i \sqrt{3}
$$

$$
z_{5}=\left[\cos \left(-\frac{\pi}{2}\right)+i \sin \left(-\frac{\pi}{2}\right)\right]
$$

$$
\begin{aligned}
& z_{3}=4\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) \\
& z_{6}=-7+7 i
\end{aligned}
$$

Given the complex numbers above, complete the following problems. Be sure to give exact values when possible. Use trig identities when needed.

1. Give the trig form of z_{1} (calculator based)
2. Give the standard form of Z_{4}
3. Find $\frac{z_{6}}{z_{3}}$, Give your answer in trig form.
4. Find $z_{2} z_{4}$. Give your answer in standard form.
5. Find $z_{5} z_{6}$. Give your answer in trig form.
6. Find $\left|z_{2}\right|$

Problem set 2 (no key)

Dot Product, Orthogonal Vectors
Draw vectors \boldsymbol{u} and \boldsymbol{v} on the same coordinate plane. Then, find the dot product of \boldsymbol{u} and $\boldsymbol{v},\|\boldsymbol{u}\|$ and $\|v\|$. Finally, find the measure of the angle between the two vectors.
2. $\boldsymbol{u}=\langle 2,4\rangle$ and $\boldsymbol{v}=\langle-2,6\rangle$
$u \cdot v=$
$\|\boldsymbol{u}\|=$
$\|v\|=$

Angle between the two vectors = \qquad
3. $\boldsymbol{u}=\langle 4,-2\rangle$ and $\boldsymbol{v}=\langle 3,6\rangle$
$u \cdot v=$
$\|u\|=$
$\|v\|=$

Angle between the two vectors $=$ \qquad
frind Problem set 3 (has key)
the trigonometric form of the number

1. $3-3 i$
2. $\sqrt{3}+i$
3. $-5 i$
4. 4

Find the standard form of the number

1. $\frac{1}{4}\left(\cos 300^{\circ}+i \sin 300^{\circ}\right)$

Perform the operation and leave in trigonometric form

1. $\left[2\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right]\left[6\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)\right]$
2. $\frac{5(\cos 4.3+i \sin 4.3)}{4(\cos 2.1+i \sin 2.1)}$
3. $\frac{12\left(\cos 52^{\circ}+i \sin 52^{\circ}\right)}{3\left(\cos 110^{\circ}+i \sin 110^{\circ}\right)}$

Use DeMoivre's Theorem to find the indicated power of the complex number. Write in standard form.

1. $(1+i)^{5}$
2. $(\sqrt{3}+i)^{7}$

Problem set 4, (same key as problem set 3)

Find the component form of \mathbf{v} given its magnitude and the angle it makes with the positive x-axis.

1. $\|v\|=2 \sqrt{3}, \theta=90^{\circ}$
2. $\|v\|=8, \theta=225^{\circ}$

Find the magnitude and direction angle of the vector \mathbf{v}.
3. $\mathbf{v}=-4 i+7 j$
4. $v=-3 i-3 j$
5. $\mathbf{v}=8 i-j$
\#3-5 are calculator based

Find the dot product of \mathbf{u} and \mathbf{v}.
6. $u=\langle 4,-3\rangle, v=\langle 1,5\rangle$
7. $u=-3 i+j, \quad v=-2 i-6 j$

Find the angle θ between the vectors. Round to the nearest tenth of a degree.
8. $u=\langle 1,-4\rangle, v=\langle 2,2\rangle$

$$
\text { 9. } u=3 i+7 j, v=-i+2 j
$$

\#8 and 9 are calculator based

Represent the complex number graphically, and find the trigonometric form of the number.

13. $2-2 i$
14. $-3 i$
15. 6

Perform the operation and leave the result in trigonometric form.
16. Find $z_{1} z_{2} \quad z_{1}=3\left(\cos \frac{\pi}{6}+\sin \frac{\pi}{6} i\right) \quad z_{2}=4\left(\cos \frac{\pi}{12}+\sin \frac{\pi}{12} i\right)$
17. Find $\frac{z_{1}}{z_{2}} \quad z_{1}=(\cos 2.5+\sin 2.5 i) \quad z_{2}=6(\cos 1.5+i \sin 1.5)$

Use DeMoivre's Theorem to find the indicated power of the complex number. Write the result in standard form.
18. $(1-i)^{6}$
19. $\left[2\left(\cos 15^{\circ}+i \sin 15^{\circ}\right)\right]^{4}$

