Even and Odd Functions

A Function can be classified as Even, Odd or Neither. This classification can be determined graphically or algebraically.

Graphical Interpretation -

Even Functions:

Have a graph that is
symmetric with respect
to the \mathbf{Y}-Axis.

Odd Functions:

Have a graph that is symmetric with respect to the Origin.

Origin - If you spin the picture upside down about the Origin, the graph looks the same!

Algebraic Test - Substitute $(-x)$ in for x everywhere in the function and analyze the results of $f(-x)$, by comparing it to the original function $f(x)$.

Even Function: $\quad \boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ is Even when, for each x in the domain of $f(x), f(-x)=f(x)$

Odd Function: $\quad \boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ is Odd when, for each x in the domain of $f(x), f(-x)=-f(x)$

Examples:

a. $f(x)=x^{2}+4$
$f(-x)=(-x)^{2}+4$
b. $f(x)=x^{3}-2 x$
$f(-x)=(-x)^{3}-2(-x)$
c. $f(x)=x^{2}-3 x+4$
$f(x)=(-x)^{2}-3(-x)+4$
$f(-x)=x^{2}+4$
$f(-x)=-x^{3}+2 x$
$f(-x)=x^{2}+3 x+4$
$f(-x)=f(x)$
$f(-x)=-\left(x^{3}-2 x\right)=-f(x)$
$f(-x) \neq f(x) \neq-f(x)$
Even Function!

Even and Odd Functions - Practice Problems

A. Graphically determine whether the following functions are Even, Odd, or Neither
1.

2.

3.

B. Algebraically determine whether the following functions are Even, Odd, or Neither

1. $f(x)=x^{3}-x^{2}+4 x+2$
2. $f(x)=-x^{2}+10$
3. $f(x)=x^{3}+4 x$
4. $f(x)=-x^{3}+5 x-2$
5. $f(x)=\sqrt{x^{4}-x^{2}}+4$
6. $f(x)=|x+4|$
7. $f(x)=|x|+4$
8. $f(x)=x^{4}-2 x^{2}+4$
9. $f(x)=\sqrt[3]{x}$
10. $f(x)=x \sqrt{x^{2}-1}$
11. Given the point $(2,-5)$ is on the graph of $f(x)$.
A) If $f(x)$ is an even function, what is another point that is on the graph of $f(x)$?
B) If $f(x)$ is an odd function, what is another point that is on the graph of $f(x)$?

Answers:

Section A (Graphs)

1. Odd
2. Neither
3. Even

Section B (Algebra)

1. Neither
2. Even 11.
3. Odd
A) $(-2,-5)$
4. Neither
5. Even
6. Neither
7. Even
8. Even
9. Odd
10. Odd
