1. On the closed interval $[0,10]$, how many times do the graphs of $y=\cos x$ and $y=-2 e^{-2 x}$ intersect?
2. Given $f(x)=x^{\frac{4}{5}}-1$, without entering $f^{\prime}(x)$ by hand into the calculator, list 3 different methods to evaluate $\lim _{x \rightarrow 0^{-}} f^{\prime}(x)$.
3. Use the table feature of your calculator to find $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}$.
4. Find the roots of $y=x^{3}+1.1 x^{2}-1.6 x+0.4$.
5. Find the coordinates of the intersection of $y=3 \sin x$ and $y=0.5 x+1$.
6. Given $f(x)=\frac{x^{2}+3}{x}$, find the coordinates of the relative maxima and minima.
7. The path of a particle along a vertical line is given by $y(t)=-2 t^{3}+3 t^{2}+4$. Find the position of the particle when the velocity is a maximum.
8. Describe how to find the slope of the equation of the line tangent to $y=2 x-0.5 x^{2}$ at $x=-1.7$ using your calculator.
9. Find the area bounded by the function $y=\cos \left(x^{3}\right)$ and $y=x^{2}$.
10. Find the area under the curve $y=\frac{1}{x}$ from $x=k$ to $x=2 k$ for $k>0$. (Use two different values for k.
11. Given the function $f(x)=x^{3}-x^{2}-5 x+7$ on [1, 3],
(a) Sketch the graph of the function on the interval,
(b) Find the average slope.
(c) Find the value of z such that $f^{\prime}(z)=$ average slope.
(d) Draw the tangent line at $x=z$. Draw the secant line through the endpoints of the interval.

How do the two lines compare?
12. If $f^{\prime}(x)=x^{3}-6 x+4$, determine the interval in which $f(x)$ is concave down.
13. Use the AUTO/ASK feature of your table to find $f\left(\frac{14}{3}\right)$ given $f(x)=2 x^{4}+1.7 x^{2}-1.6 x+1.8$.
14. Describe the keys pressed to get to Y_{1}, Y_{2}, etc.
15. What is the sto (\rightarrow) feature and when should you use it?
16. Graph the derivative of $\mathrm{e}^{\tan x}$, without first finding the derivative by hand.

