1. Solve $3(4-2 x)=4(x-4)+2 x+11$.
2. What are the terms of an expression?
3. Maria earns $\$ 6$ per hour babysitting for b hours $\$ 5$ per lawn to mow 1 lawns. Write an expression that best represents the amount Maria earns in one day working both jobs.
4. Write two expressions equivalent to $8(4 x-2)+g$.
5. The area of a trapezoid is $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$. Solve the equation for b_{2}.
6. Solve the inequality $2 x-7 \leq-3$.
7. Solve the inequality $4 x+3 \geq-7$.
8. What is the value of $f(x)=\frac{2}{3} x-3$ when $x=42$?
9. Describe a situation that would have a discrete graph.
10. Draw a graph that represents your distance from school over time on your walk home if you walk for 10 minutes, stop to talk with a friend for 3 minutes, then run back to school to get your math book that you forgot.
11. What are the characteristics of the graph of a function?
12. Sketch a parabola in the first quadrant that opens down. Scale the axes however you would like. At what x-value does it reach its maximum height? What is that maximum height?
13. Find the $8^{\text {th }}$ term of the arithmetic sequence $5,8,11,14,17, \ldots$
14. Write an explicit rule for the sequence $-5,-15,-45,-135,-405, \ldots$
15. Find the first five terms of the sequence recursively defined as $a_{1}=12 ; a_{n}=a_{n-1}-5$
16. What is the y-intercept of $5 x+12 y=36$?
17. What is the slope of the line that contains the points $(7,1)$ and $(-3,19)$?
18. Write the point-slope form of the equation that has a slope of -2 and passes through the point $(5,-3)$.
19. Write the standard form of the equation that passes through the point $(-4,3)$ with a slope of 5 .
20. Write two equations that do NOT represent a linear function.
21. Write the slope-intercept form of the equation that contains the points $(3,4)$ and $(-1,6)$.
22. Zach earns $\$ 10$ for every lawn he mows and $\$ 15$ for lawn he rakes. He deposits $\$ 500$ in the bank at the end of the summer. Write the equation that represents this situation.
23. Graph the inequality $6 x+15 y>-9$.
24. Graph the inequality $3 x>-18$.
25. Solve the system of equations $f(x)=\left\{\begin{array}{l}x+y=-1 \\ x-y=-7\end{array}\right.$.
26. Zahra spent $\$ 20.50$ on 10 party favors for her party. The boys each received a puzzle book that cost $\$ 1.75$ each. The girls each received a magic trick that cost $\$ 2.25$ each. How many boys and how many girls attended the party?
27. Describe the graph of the function $p(x)=(x-3)(x-1)(x+2)$. What are its x-intercepts? What is If $f(x)=|x|$ and $g(x)$ is $f(x)$ translated down 3 units, what would the equation be?
28. What would the equation of an absolute value function that had been shifted to the left look like?
29. What would the vertex of the graph above be?
30. What are the solutions to $3|x+6|=3$?
31. What are the solutions of $9 \geq|x-6|-3$?
32. Solve $\left|\frac{x}{3}\right|+2 \leq 4$.
33. Solve $2|x+6|+3 \geq 29$.
34. Simplify the expression $\left(\frac{2}{3}\right)^{-\frac{5}{2}}$ using rational exponents.
35. Simplify the expression $9^{\frac{3}{2}}$ using rational exponents.
36. Simplify the expression $\sqrt{\left(9 w^{2}\right)^{3}} \sqrt[4]{\left(9 w^{3}\right)^{4}}$.
37. Find the common ratio r for the geometric sequence $39,27, \ldots$ and find the next three terms.
38. Write the recursive rule for the geometric sequence $88,44,22, \ldots$.
39. Write the explicit rule for the geometric sequence $3,6,9, \ldots$.
40. Write an exponential function that includes the points (4, -48), ($-1,-1.5$).
41. State a, b, and the y-intercept of the exponential function $f(x)=5(1.5)^{x}$.
42. Describe the transformation of $g(x)=3(2)^{x}$ relative to $f(x)=2^{x}$.
43. A bacteria population starts at 2,032 and decreases at about 15% per day. Write a function representing the number of bacteria present each day.
44. Ted's comic book collection, which was worth $\$ 1300$ five years ago, has been increasing in value by 12% per year since then. Write an expression that gives the current value of his collection.
45. The balance of an account earning simple interest is $\$ 1000$ when the account is opened, $\$ 1075$ after one year, and $\$ 1150$ after two years. How does the balance change from year to year?
46. What is the degree of a polynomial? How do you describe a polynomial based on the number of terms?
47. Write an expression equivalent to $9 y^{2}+3 y$?
48. Multiply $(x-3)\left(x^{2}-2 x+3\right)$.
49. Write a polynomial that represents the area of a rectangle with sides of length $x+2$ and $x^{2}-2$.
50. Find the area of the rectangle above if $x=3$ in.
51. What is the product of $(4 x+2)$ and $(x-3)$?
52. Multiply $(3 x-2)^{2}$.
53. How would the graph of $y=x^{2}+2$ be affected if the function were changed to $y=x^{2}-3$?
54. Compare the graphs of $f(x)=x^{2}$ and $g(x)=-x^{2}+3$.
55. What are the x-intercepts of the graph of the function $(x+3)(x-7)=0$?
56. Find the axis of symmetry of the graph of $y=2 x^{2}-4 x+3$.
57. State the domain and range of the quadratic equation $y=(x+4)^{2}-1$.
58. A flower bed with dimensions x by 6 is surrounded by a walkway with dimensions $2 x+1$ by $x-3$. Write a polynomial to represent the area of the walkway.
59. Solve the equation $x^{2}=15-2 x$.
60. Solve $4 x^{2}-9=0$ for x .
61. Solve $3 x^{2}+8 x-2=0$ for x using the quadratic formula.
62. Which number completes $x^{2}+10 x+$ \qquad to form a perfect square trinomial?
63. The height in feet of a baseball above the ground is given by the equation $h(t)=-16 t^{2}+80 t+3$ where t is the time in seconds after the baseball is hit. How long does it take the baseball to reach the ground?
64. The baseball was hit when it was 3 feet above the ground. After how many seconds is the baseball back at a height of 3 feet?
65. its y-intercept? What shape does it have?
66. Sketch examples of all of the following families of functions: linear, constant, quadratic, exponential, step, absolute value, cubic, square root, cube root.
67. Find the equation for the inverse relation of $y=2 x^{2}-1$?
