Given a Graph / $2^{\text {nd }}$ Fundamental Theorem of Calculus

AB-5/BC-5
5. The graph of the function f, consisting of three line segments, is given above. Let $g(x)=\int_{1}^{x} f(t) d t$.
(a) Compute $g(4)$ and $g(-2)$.
(b) Find the instantaneous rate of change of g, with respect to x, at $x=1$.
(c) Find the absolute minimum value of g on the closed interval $[-2,4]$. Justify your answer.
(d) The second derivative of g is not defined at $x=1$ and $x=2$.

How many of these values are x coordinates of points of inflection of the graph of g ? Justify your answer.
(a) $g(4)=\int_{1}^{4} f(t) d t=\frac{3}{2}+1+\frac{1}{2}-\frac{1}{2}=\frac{5}{2}$
$g(-2)=\int_{1}^{-2} f(t) d t=-\frac{1}{2}(12)=-6$
(b) $g^{\prime}(1)=f(1)=4$
(c) g is increasing on $[-2,3]$ and decreasing on $[3,4]$.

Therefore, g has absolute minimum at an endpoint of $[-2,4]$.

Since $g(-2)=-6$ and $g(4)=\frac{5}{2}$,
the absolute minimum value is -6 .
(d) One; $x=1$

On $(-2,1), g^{\prime \prime}(x)=f^{\prime}(x)>0$
On $(1,2), g^{\prime \prime}(x)=f^{\prime}(x)<0$
On $(2,4), g^{\prime \prime}(x)=f^{\prime}(x)<0$
Therefore $(1, g(1))$ is a point of inflection and $(2, g(2))$ is not.
$2\left\{\begin{array}{l}1: g(4) \\ 1: g(-2)\end{array}\right.$

1: answer
$3\left\{\begin{array}{l}1: \text { interior analysis } \\ 1: \text { endpoint analysis } \\ 1: \text { answer }\end{array}\right.$
$3\left\{\begin{array}{l}1: \text { choice of } x=1 \text { only } \\ 1: \text { show }(1, g(1)) \text { is a point of inflection } \\ 1: \text { show }(2, g(2)) \text { is not a point of inflection }\end{array}\right.$

Question 4

The graph of the function f shown above consists of two line segments. Let g be the function given by $g(x)=\int_{0}^{x} f(t) d t$.
(a) Find $g(-1), g^{\prime}(-1)$, and $g^{\prime \prime}(-1)$.
(b) For what values of x in the open interval $(-2,2)$ is g increasing? Explain your reasoning.
(c) For what values of x in the open interval $(-2,2)$ is the graph of g concave down? Explain your reasoning.
(d) On the axes provided, sketch the graph of g on the closed interval $[-2,2]$.

(a) $g(-1)=\int_{0}^{-1} f(t) d t=-\int_{-1}^{0} f(t) d t=-\frac{3}{2}$
$g^{\prime}(-1)=f(-1)=0$
$g^{\prime \prime}(-1)=f^{\prime}(-1)=3$
(b) g is increasing on $-1<x<1$ because $g^{\prime}(x)=f(x)>0$ on this interval.
(c) The graph of g is concave down on $0<x<2$ because $g^{\prime \prime}(x)=f^{\prime}(x)<0$ on this interval.
or
because $g^{\prime}(x)=f(x)$ is decreasing on this interval.
(d)

$2 \begin{cases}1: & \text { interval } \\ 1: & \text { reason }\end{cases}$
$3 \begin{cases}1: & g(-1) \\ 1: & g^{\prime}(-1) \\ 1: & g^{\prime \prime}(-1)\end{cases}$
$2 \begin{cases}1: & \text { interval } \\ 1: & \text { reason }\end{cases}$

$$
\left\{\begin{aligned}
1: & g(-2)=g(0)=g(2)=0 \\
1: & \text { appropriate increasing/decreasing } \\
& \text { and concavity behavior } \\
& <-1>\text { vertical asymptote }
\end{aligned}\right.
$$

2003 SCORING GUIDELINES (Form B)

Question 5

Let f be a function defined on the closed interval $[0,7]$. The graph of f, consisting of four line segments, is shown above. Let g be the function given by $g(x)=\int_{2}^{x} f(t) d t$.
(a) Find $g(3), g^{\prime}(3)$, and $g^{\prime \prime}(3)$.
(b) Find the average rate of change of g on the interval $0 \leq x \leq 3$.
(c) For how many values c, where $0<c<3$, is $g^{\prime}(c)$ equal to the average rate found in part (b)? Explain your reasoning.
(d) Find the x-coordinate of each point of inflection of the graph of
 g on the interval $0<x<7$. Justify your answer.
(a) $g(3)=\int_{2}^{3} f(t) d t=\frac{1}{2}(4+2)=3$ $g^{\prime}(3)=f(3)=2$ $g^{\prime \prime}(3)=f^{\prime}(3)=\frac{0-4}{4-2}=-2$
(b) $\frac{g(3)-g(0)}{3}=\frac{1}{3} \int_{0}^{3} f(t) d t$

$$
=\frac{1}{3}\left(\frac{1}{2}(2)(4)+\frac{1}{2}(4+2)\right)=\frac{7}{3}
$$

(c) There are two values of c.

We need $\frac{7}{3}=g^{\prime}(c)=f(c)$
The graph of f intersects the line $y=\frac{7}{3}$ at two places between 0 and 3 .
(d) $x=2$ and $x=5$
because $g^{\prime}=f$ changes from increasing to decreasing at $x=2$, and from decreasing to increasing at $x=5$.
$3:\left\{\begin{array}{l}1: g(3) \\ 1: g^{\prime}(3) \\ 1: g^{\prime \prime}(3)\end{array}\right.$
$2:\left\{\begin{array}{l}1: g(3)-g(0)=\int_{0}^{3} f(t) d t \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { answer of } 2 \\ 1: \text { reason }\end{array}\right.$

Note: $1 / 2$ if answer is 1 by MVT
$2:\left\{\begin{array}{l}1: x=2 \text { and } x=5 \text { only } \\ 1: \text { justification } \\ \quad(\text { ignore discussion at } x=4)\end{array}\right.$

AP ${ }^{\circledR}$ CALCULUS AB 2004 SCORING GUIDELINES

Question 5

The graph of the function f shown above consists of a semicircle and three line segments. Let g be the function given by $g(x)=\int_{-3}^{x} f(t) d t$.
(a) Find $g(0)$ and $g^{\prime}(0)$.
(b) Find all values of x in the open interval $(-5,4)$ at which g attains a relative maximum. Justify your answer.
(c) Find the absolute minimum value of g on the closed interval $[-5,4]$. Justify your answer.

(d) Find all values of x in the open interval $(-5,4)$ at which the graph of g has a point of inflection.
(a) $g(0)=\int_{-3}^{0} f(t) d t=\frac{1}{2}(3)(2+1)=\frac{9}{2}$ $g^{\prime}(0)=f(0)=1$
(b) g has a relative maximum at $x=3$.

This is the only x-value where $g^{\prime}=f$ changes from positive to negative.
(c) The only x-value where f changes from negative to positive is $x=-4$. The other candidates for the location of the absolute minimum value are the endpoints.

$$
\begin{aligned}
& g(-5)=0 \\
& g(-4)=\int_{-3}^{-4} f(t) d t=-1 \\
& g(4)=\frac{9}{2}+\left(2-\frac{\pi}{2}\right)=\frac{13-\pi}{2}
\end{aligned}
$$

So the absolute minimum value of g is -1 .
(d) $x=-3,1,2$
$2:\left\{\begin{array}{l}1: g(0) \\ 1: g^{\prime}(0)\end{array}\right.$
$2:\left\{\begin{array}{l}1: x=3 \\ 1: \text { justification }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { identifies } x=-4 \text { as a candidate } \\ 1: g(-4)=-1 \\ 1: \text { justification and answer }\end{array}\right.$

2 : correct values
$\langle-1\rangle$ each missing or extra value

2008 SCORING GUIDELINES (Form B)

Question 5

Let g be a continuous function with $g(2)=5$. The graph of the piecewise-linear function g^{\prime}, the derivative of g, is shown above for $-3 \leq x \leq 7$.
(a) Find the x-coordinate of all points of inflection of the graph of $y=g(x)$ for $-3<x<7$. Justify your answer.
(b) Find the absolute maximum value of g on the interval $-3 \leq x \leq 7$. Justify your answer.
(c) Find the average rate of change of $g(x)$ on the interval $-3 \leq x \leq 7$.

(d) Find the average rate of change of $g^{\prime}(x)$ on the interval $-3 \leq x \leq 7$. Does the Mean Value Theorem applied on the interval $-3 \leq x \leq 7$ guarantee a value of c, for $-3<c<7$, such that $g^{\prime \prime}(c)$ is equal to this average rate of change? Why or why not?
(a) g^{\prime} changes from increasing to decreasing at $x=1$;
g^{\prime} changes from decreasing to increasing at $x=4$.
Points of inflection for the graph of $y=g(x)$ occur at $x=1$ and $x=4$.
(b) The only sign change of g^{\prime} from positive to negative in the interval is at $x=2$.

$$
\begin{aligned}
g(-3) & =5+\int_{2}^{-3} g^{\prime}(x) d x=5+\left(-\frac{3}{2}\right)+4=\frac{15}{2} \\
g(2) & =5 \\
g(7) & =5+\int_{2}^{7} g^{\prime}(x) d x=5+(-4)+\frac{1}{2}=\frac{3}{2}
\end{aligned}
$$

The maximum value of g for $-3 \leq x \leq 7$ is $\frac{15}{2}$.
(c) $\frac{g(7)-g(-3)}{7-(-3)}=\frac{\frac{3}{2}-\frac{15}{2}}{10}=-\frac{3}{5}$
(d) $\frac{g^{\prime}(7)-g^{\prime}(-3)}{7-(-3)}=\frac{1-(-4)}{10}=\frac{1}{2}$

No, the MVT does not guarantee the existence of a value c with the stated properties because g^{\prime} is not differentiable for at least one point in $-3<x<7$.
$2:\left\{\begin{array}{l}1: x \text {-values } \\ 1: \text { justification }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { identifies } x=2 \text { as a candidate } \\ 1: \text { considers endpoints } \\ 1: \text { maximum value and justification }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { difference quotient } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { average value of } g^{\prime}(x) \\ 1: \text { answer "No" with reason }\end{array}\right.$

2010 SCORING GUIDELINES

Question 3

There are 700 people in line for a popular amusement-park ride when the ride begins operation in the morning. Once it begins operation, the ride accepts passengers until the park closes 8 hours later. While there is a line, people move onto the ride at a rate of 800 people per hour. The graph above shows the rate, $r(t)$, at which people arrive at the ride throughout the day. Time t is measured in hours from the time the ride begins operation.
(a) How many people arrive at the ride between $t=0$ and $t=3$? Show the computations that lead to your answer.
(b) Is the number of people waiting in line to get on the ride increasing or decreasing between $t=2$ and $t=3$? Justify
 your answer.
(c) At what time t is the line for the ride the longest? How many people are in line at that time? Justify your answers.
(d) Write, but do not solve, an equation involving an integral expression of r whose solution gives the earliest time t at which there is no longer a line for the ride.
(a) $\int_{0}^{3} r(t) d t=2 \cdot \frac{1000+1200}{2}+\frac{1200+800}{2}=3200$ people
(b) The number of people waiting in line is increasing because people move onto the ride at a rate of 800 people per hour and for $2<t<3, r(t)>800$.
(c) $r(t)=800$ only at $t=3$

For $0 \leq t<3, r(t)>800$. For $3<t \leq 8, r(t)<800$.
Therefore, the line is longest at time $t=3$.
There are $700+3200-800 \cdot 3=1500$ people waiting in line at time $t=3$.
(d) $0=700+\int_{0}^{t} r(s) d s-800 t$
$2:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { answer }\end{array}\right.$

1 : answer with reason
$3:\left\{\begin{array}{l}1: \text { identifies } t=3 \\ 1: \text { number of people in line } \\ 1: \text { justification }\end{array}\right.$
$3:\left\{\begin{array}{l}1: 800 t \\ 1: \text { integral } \\ 1: \text { answer }\end{array}\right.$

