Calculus Volume by Cross Sections

This packet contains 4 worksheets that students can use to practice finding the volume of solids that are made of cross-sections.

Answer Keys are provided.

Do you need more work with volume?

Check out these products:

1) Volume of Solids of Revolution Task Cards

https://www.teacherspayteachers.com/Product/Calculus-Volume-of-Solids-of-Revolution-Task-Cards-1181354

2) Volumes by Cross Sections Task Cards

https://www.teacherspayteachers.com/Product/Calculus-Volume-by-Cross-Sections-Task-Cards-with-and-without-QR-Codes-1184680

3) Volumes by Rotation and Cross Sections Puzzle

https://www.teacherspayteachers.com/Product/Calculus-Volumes-of-3D-Solids-of-Rotation-and-Cross-Section-Puzzle-578890

Calculus Volume of a Solid by Cross Sections A

1	Congidor the grass hounded	A.	What will the volume of the
1.	Consider the space bounded by $y = x^2$, the line $x = 3$, and	A.	shape be if the cross sections
	the x-axis. Suppose a three		are squares?
	dimensional solid is made by		
	making cross sections		
	perpendicular to the x-axis.		
В.	What will the volume of the	C.	What will the volume of the
	shape be if the cross sections		shape be if the cross sections
	are semi-circles?		are equilateral triangles?

Calculus Volume of a Solid by Cross Sections A **ANSWER KEY** Consider the space bounded A. What will the volume of the 1. by $y = x^2$, the line x = 3, and shape be if the cross sections the x-axis. Suppose a three are squares? dimensional solid is made by making cross sections perpendicular to the x-axis. 243 5 What will the volume of the C. What will the volume of the Β. shape be if the cross sections shape be if the cross sections are semi-circles? are equilateral triangles? 243π $\frac{243\sqrt{3}}{20}$ 40

Calculus Volume of a Solid by Cross Sections B

1.	Consider the space bounded by $y = x^2$, the line $x = 3$, and the x-axis. Suppose a three dimensional solid is made by making cross sections perpendicular to the y-axis.	А.	What will the volume of the shape be if the cross sections are squares?
В.	What will the volume of the shape be if the cross sections are semi-circles?	C.	What will the volume of the shape be if the cross sections are isosceles right triangles (the leg of the right triangle stretches across the base of the shape)?

CalculusVolume of a Solid by Cross Sections B
ANSWER KEYConsider the space bounded
by $y = x^2$, the line x = 3, and
the x-axis. Suppose a three
dimensional solid is made by
making cross sectionsA. What will the volume of the
shape be if the cross sections
are squares?

perpendicular to the y-axis.

1.

B. What will the volume of the shape be if the cross sections are semi-circles?

 $\frac{27\pi}{16}$

C. What will the volume of the shape be if the cross sections are isosceles right triangles (the leg of the right triangle stretches across the base of the shape)?

 $\frac{27}{4}$

Calculus Volume of a Solid by Cross Sections C

1. Consider the space bounded by y = x ² , the line y = 4, and the y-axis. Suppose a three dimensional solid is made by making cross sections perpendicular to the x-axis.	A. What will the volume of the shape be if the cross sections are squares?
B. What will the volume of the shape be if the cross sections are semi-circles?	C. What will the volume of the shape be if the cross sections are equilateral triangles?

Calculus Volume of a Solid by Cross Sections D

1.	Consider the space bounded by $y = x^2$ and $y = x$ in the first quadrant. Suppose a three dimensional solid is made by making cross sections perpendicular to the x-axis.	A.	What will the volume of the shape be if the cross sections are squares?
В.	What will the volume of the shape be if the cross sections are semi-circles?	C.	What will the volume of the shape be if the cross sections are equilateral triangles?

