Factoring Review/Solving

Factor completely by factoring out a GCF, then factoring the remaining trinomial.

1) $x^{3}+x^{2}-6 x$
2) $2 x^{4}-12 x^{3}+18 x^{2}$
3) $10 x^{4}-90 x^{2}$
4) $x^{3}-7 x^{2}+12 x$

Factor each sum of cubes.
5) $27 x^{3}+125$
6) $8 x^{3}+27$

Factor each difference of cubes.
7) $8 x^{3}-1$
8) $27 x^{3}-125$

Factor each completely by grouping.
9) $x^{3}+5 x^{2}-6 x-30$
10) $7 r^{3}-42 r^{2}-3 r+18$
11) $5 n^{3}+40 n^{2}-n-8$
12) $6 x^{3}-x^{2}-42 x+7$

Factor each quadratic form polynomial completely.
13) $x^{4}+6 x^{2}-16$
14) $m^{4}-1$

Solve for x . (Hint: Factor first similar to \#19 below, then set each factor equal to 0 and solve for \mathbf{x})
17) $x^{3}-2 x^{2}-5 x+10=0$
18) $x^{4}-7 x^{2}-18=0$
19) $x(3 x-5)(x-4)=0$
20) $9 x^{4}-30 x^{2}+25=0$
21) $8 x^{4}-54 x^{2}+81=0$
22) $x^{3}-2 x^{2}+x=0$

This problem is optional. Only the Jedi Knights of factoring should attempt it.
23) $x^{9}-25 x^{5}+144 x=0$

