Consider the differential equation $\frac{d y}{d x}=(y-1)^{2} \cos (\pi x)$.
(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated. (Note: Use the axes provided in the exam booklet.)

(b) There is a horizontal line with equation $y=c$ that satisfies this differential equation. Find the value of c.
(c) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(1)=0$.
(a)

(b) The line $y=1$ satisfies the differential equation, so $c=1$.
(c) $\frac{1}{(y-1)^{2}} d y=\cos (\pi x) d x$
$-(y-1)^{-1}=\frac{1}{\pi} \sin (\pi x)+C$
$\frac{1}{1-y}=\frac{1}{\pi} \sin (\pi x)+C$
$1=\frac{1}{\pi} \sin (\pi)+C=C$
$\frac{1}{1-y}=\frac{1}{\pi} \sin (\pi x)+1$
$\frac{\pi}{1-y}=\sin (\pi x)+\pi$
$y=1-\frac{\pi}{\sin (\pi x)+\pi}$ for $-\infty<x<\infty$
$2:\left\{\begin{array}{l}1: \text { zero slopes } \\ 1: \text { all other slopes }\end{array}\right.$
$1: c=1$
$6:\left\{\begin{array}{l}1: \text { separates variables } \\ 2: \text { antiderivatives } \\ 1: \text { constant of integration } \\ 1: \text { uses initial condition } \\ 1: \text { answer }\end{array}\right.$
Note: $\max 3 / 6$ [1-2-0-0-0] if no constant of integration
Note: $0 / 6$ if no separation of variables

2008 SCORING GUIDELINES

Question 5

Consider the differential equation $\frac{d y}{d x}=\frac{y-1}{x^{2}}$, where $x \neq 0$.
(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.
(Note: Use the axes provided in the exam booklet.)
(b) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(2)=0$.
(c) For the particular solution $y=f(x)$ described in part (b), find
 $\lim _{x \rightarrow \infty} f(x)$.
(a)

(b) $\frac{1}{y-1} d y=\frac{1}{x^{2}} d x$
$\ln |y-1|=-\frac{1}{x}+C$
$|y-1|=e^{-\frac{1}{x}+C}$
$|y-1|=e^{C} e^{-\frac{1}{x}}$
$y-1=k e^{-\frac{1}{x}}$, where $k= \pm e^{C}$
$-1=k e^{-\frac{1}{2}}$
$k=-e^{\frac{1}{2}}$
$f(x)=1-e^{\left(\frac{1}{2}-\frac{1}{x}\right)}, x>0$
(c) $\lim _{x \rightarrow \infty} 1-e^{\left(\frac{1}{2}-\frac{1}{x}\right)}=1-\sqrt{e}$

1 : limit

2002 SCORING GUIDELINES (Form B)

Question 5

Consider the differential equation $\frac{d y}{d x}=\frac{3-x}{y}$.
(a) Let $y=f(x)$ be the particular solution to the given differential equation for $1<x<5$ such that the line $y=-2$ is tangent to the graph of f. Find the x-coordinate of the point of tangency, and determine whether f has a local maximum, local minimum, or neither at this point. Justify your answer.
(b) Let $y=g(x)$ be the particular solution to the given differential equation for $-2<x<8$, with the initial condition $g(6)=-4$. Find $y=g(x)$.
(a) $\frac{d y}{d x}=0$ when $x=3$ $\left.\frac{d^{2} y}{d x^{2}}\right|_{(3,-2)}=\left.\frac{-y-y^{\prime}(3-x)}{y^{2}}\right|_{(3,-2)}=\frac{1}{2}$,
so f has a local minimum at this point.
or
Because f is continuous for $1<x<5$, there is an interval containing $x=3$ on which $y<0$. On this interval, $\frac{d y}{d x}$ is negative to the left of $x=3$ and $\frac{d y}{d x}$ is positive to the right of $x=3$. Therefore f has a local minimum at $x=3$.
(b) $y d y=(3-x) d x$
$\frac{1}{2} y^{2}=3 x-\frac{1}{2} x^{2}+C$
$8=18-18+C ; C=8$
$y^{2}=6 x-x^{2}+16$
$y=-\sqrt{6 x-x^{2}+16}$

Question 5

Consider the differential equation $\frac{d y}{d x}=x^{4}(y-2)$.
(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.
(Note: Use the axes provided in the test booklet.)
(b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the $x y$-plane. Describe all points in the $x y$-plane for which the slopes are negative.
(c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(0)=0$.

(a)

(b) Slopes are negative at points (x, y) where $x \neq 0$ and $y<2$.
(c) $\frac{1}{y-2} d y=x^{4} d x$
$\ln |y-2|=\frac{1}{5} x^{5}+C$
$|y-2|=e^{C} e^{\frac{1}{5} x^{5}}$
$y-2=K e^{\frac{1}{5} x^{5}}, K= \pm e^{C}$
$-2=K e^{0}=K$
$y=2-2 e^{\frac{1}{5} x^{5}}$

$6:\left\{\begin{array}{l}1: \text { separates variables } \\ 2: \text { antiderivatives } \\ 1: \text { constant of integration } \\ 1: \text { uses initial condition } \\ 1: \text { solves for } y \\ 0 / 1 \text { if } y \text { is not exponential }\end{array}\right.$
Note: $\max 3 / 6[1-2-0-0-0]$ if no constant of integration
Note: $0 / 6$ if no separation of variables

AP ${ }^{\oplus}$ CALCULUS AB
 2005 SCORING GUIDELINES (Form B)

Question 6

Consider the differential equation $\frac{d y}{d x}=\frac{-x y^{2}}{2}$. Let $y=f(x)$ be the particular solution to this differential equation with the initial condition $f(-1)=2$.
(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.
(Note: Use the axes provided in the test booklet.)
(b) Write an equation for the line tangent to the graph of f at $x=-1$.

(c) Find the solution $y=f(x)$ to the given differential equation with the initial condition $f(-1)=2$.
(a)

(b) Slope $=\frac{-(-1) 4}{2}=2$
$y-2=2(x+1)$
(c) $\frac{1}{y^{2}} d y=-\frac{x}{2} d x$
$-\frac{1}{y}=-\frac{x^{2}}{4}+C$
$-\frac{1}{2}=-\frac{1}{4}+C ; C=-\frac{1}{4}$
$y=\frac{1}{\frac{x^{2}}{4}+\frac{1}{4}}=\frac{4}{x^{2}+1}$
$2:\left\{\begin{array}{l}1: \text { zero slopes } \\ 1: \text { nonzero slopes }\end{array}\right.$

1 : equation

Note: $\max 3 / 6$ [1-2-0-0-0] if no constant of integration
Note: $0 / 6$ if no separation of variables

