Dividing Polynomials Using Long Division

Model Problems:

Example 1: Divide $\frac{2 x^{3}-8 x^{2}+9 x-2}{x-2}$ using long division.

$$
x - 2 \longdiv { 2 x ^ { 3 } - 8 x ^ { 2 } + 9 x - 2 }
$$

$x-2$ is called the divisor and $2 x^{3}-8 x^{2}+9 x-2$ is called the dividend. The first step is to find what we need to multiply the first term of the divisor (x) by to obtain the first term of the dividend $\left(2 x^{3}\right)$. This is $2 x^{2}$. We then multiply $x-2$ by $2 x^{2}$ and put this expression underneath the dividend. The term $2 x^{2}$ is part of the quotient, and is put on top of the horizontal line (above the $8 x^{2}$). We then subtract $2 \mathrm{x}^{3}-4 x^{2}$ from $2 x^{3}-8 x^{2}+9 x-2$.

$$
\begin{aligned}
& x - 2 \longdiv { 2 x ^ { 3 } - 8 x ^ { 2 } + 9 x - 2 } \\
& -\left(2 x^{3}-4 x^{2}\right) \\
& -4 x^{2}+9 x-2
\end{aligned}
$$

The same procedure is continued until an expression of lower degree than the divisor is obtained. This is called the remainder.

$$
\begin{aligned}
& \frac{2 x^{2}-4 \mathrm{x}+1}{x - 2 \longdiv { 2 x ^ { 3 } - 8 x ^ { 2 } + 9 x - 2 }} \\
& \frac{-\left(2 x^{3}-4 x^{2}\right)}{-4 x^{2}+9 x-2} \\
& \frac{-\left(-4 x^{2}+8 x\right)}{x-2} \\
& \frac{-(x-2)}{0}
\end{aligned}
$$

We've found that $\frac{2 x^{3}-8 x^{2}+9 x-2}{x-2}=2 x^{2}-4 x+1$

Example 2: $\frac{8 t^{3}+14 t+8}{2 t+1}$

Since the dividend (the numerator) doesn't have a second-degree term, it is useful to use placeholders so that we do our subtraction correctly. The problem works out as follows:

$$
2 t+12 t+1) \overline{8 t^{3}+0 t^{2}+14 t+8}
$$

Dividing we get:

$$
\begin{array}{r}
\left.\frac{4 t^{2}-2 t+8}{} 2 t+1\right) 8 t^{3}+0 t^{2}+14 t+8 \\
\frac{-\left(8 t^{3}+4 t^{2}\right)}{-4 t^{2}+14 t} \\
\frac{-\left(-4 t^{2}-2 t\right)}{+16 t+8} \\
\frac{-(+16 t+8)}{0}
\end{array}
$$

PRACTICE:

1. $\frac{3 x^{3}+5 x^{2}-11 x+3}{x+3}$
2. $\frac{4 x^{3}+6 x^{2}-10 x+4}{2 x-1}$
3. $\frac{x^{3}+1}{x-1}$

ANSWERS:

1. $3 x^{2}-4 x+1$
2. $2 x^{2}+4 x-3+\frac{1}{2 x-1}$
3. $x^{2}+x+1+\frac{2}{x-1}$
