Additional Problems on Definite Integrals Involving Inverse Trig Functions

In exercises 1-6, evaluate each integral in terms of an inverse trigonometric function.

1) $\int_{0}^{\sqrt{3} / 2} \frac{d x}{\sqrt{1-x^{2}}}$

Answer:
2) $\int_{-1 / 2}^{1 / 2} \frac{d x}{\sqrt{1-x^{2}}}$
3) $\int_{\sqrt{3}}^{1} \frac{d x}{1+x^{2}}$

Answer:
4) $\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{d x}{1+x^{2}}$
5) $\int_{1}^{\sqrt{2}} \frac{d x}{|x| \sqrt{x^{2}-1}}$

Answer:

©
0

6) $\int_{1}^{\frac{2}{\sqrt{3}}} \frac{d x}{|x| \sqrt{x^{2}-1}}$

Answers to odds

In exercises 1-6, evaluate each integral in terms of an inverse trigonometric function.

1) $\int_{0}^{\sqrt{3} / 2} \frac{d x}{\sqrt{1-x^{2}}}$

Answer:

$$
\int_{0}^{\sqrt{3} / 2} \frac{d x}{\sqrt{1-x^{2}}}=\left.\quad \arcsin x\right|_{0} ^{\sqrt{3} / 2}=\frac{\pi}{3}
$$

2) $\int_{-1 / 2}^{1 / 2} \frac{d x}{\sqrt{1-x^{2}}}$
3) $\int_{\sqrt{3}}^{1} \frac{d x}{1+x^{2}}$

Answer:

$$
\int_{\sqrt{3}}^{1} \frac{d x}{1+x^{2}}=\left.\arctan x\right|_{\sqrt{3}} ^{1}=-\frac{\pi}{12}
$$

4) $\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{d x}{1+x^{2}}$
5) $\int_{1}^{\sqrt{2}} \frac{d x}{|x| \sqrt{x^{2}-1}}$

Answer:

$$
\int_{1}^{\sqrt{2}} \frac{d x}{|x| \sqrt{x^{2}-1}}=\left.\operatorname{arcsec} x\right|_{1} ^{\sqrt{2}}=\frac{\pi}{4}
$$

