Graphing Polynomial Functions from Factored Form

Sketch the graph of each polynomial function.

Function	n degree	a Lead coef.	End Behavior (use <i>n</i> and <i>a</i>)	x-intercepts
$f(x) = (x+1)^2 (x-2)(x-3)$				
$f(x) = -2(x+3)^3(x-2)^2$				

1)	1		2)	1	
_			_		

Function	n degree	a Lead coef.	End Behavior (use <i>n</i> and <i>a</i>)	x-intercepts
3. $f(x) = (x-1)^3 (x+4)^2$				
4. $f(x) = x(x+3)(x+1)(x-1)(x-3)$				

More Practice

Use the graphs to fill in the table

1.

2.

3.

Function	n degree (circle one)	Lead coef. (circle one)	End Behavior	How many x- intercepts?
1.	Odd Even	Positive negative		
2.	Odd Even	Positive negative		
3.	Odd Even	Positive negative		

Fill in the table for each of the following functions, then sketch the graphs.

Function	<i>n</i> degree	a Lead coef.	End Behavior (use <i>n</i> and <i>a</i>)	x-intercepts
4. $f(x) = x(x-4)^2$				
5. $f(x) = -x^2(x-2)(x+1)$				

4)

5)

Function	n degree	a Lead coef.	End Behavior (use <i>n</i> and <i>a</i>)	x-intercepts
6. $f(x) = -(x-1)^2(x+3)$				
7. $f(x) = (x+2)(x-3)(x-1)$				

6.
$$f(x) = -(x-1)^2(x+3)$$

Now state the intervals where the function is above (positive) or below (negative) the *x*-axis. Use inequality notation.

above x-axis (function is positive)

above x-axis (function is positive)

below x-axis (function is negative)

below x-axis (function is negative)