The Fundamental Theorems of Calculus

Page 1 of 12

The Fundamental Theorems of Calculus

I. If f is continuous on [a, b], then the function $F(x)=\int_{a}^{x} f(t) d t$ has a derivative at every point in $[a, b]$, and $\frac{d F}{d x}=\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$.
II. If f is continuous on $[a, b]$, and if F is any antiderivative of f on $[a, b]$, then $\int_{a}^{b} f(t) d t=F(b)-F(a)$.

Note: These two theorems may be presented in reverse order. Part II is sometimes called the Integral Evaluation Theorem.

Don't overlook the obvious!

1. $\frac{d}{d x} \int_{a}^{a} f(t) d t=0$, because the definite integral is a constant
2. $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$

Upgrade for part I, applying the Chain Rule

If $F(x)=\int_{a}^{g(x)} f(t) d t$, then $\frac{d F}{d x}=\frac{d}{d x} \int_{a}^{g(x)} f(t) d t=f(g(x)) g^{\prime}(x)$.
For example, $\frac{d}{d x} \int_{2}^{x^{3}} \sin \left(t^{2}\right) d t=\left(\left(\sin \left(x^{3}\right)^{2}\right)\left(3 x^{2}\right)=3 x^{2} \sin \left(x^{6}\right)\right.$

An important alternate form for part II

$F(b)=F(a)+\int_{a}^{b} f(t) d t$
[Think of this as: ending value $=$ starting value plus accumulation.]
For example, given that $\int_{3}^{12} f^{\prime}(x) d x=-4$ and $f(3)=35$, find $f(12)$.
Using the alternate format, $f(12)=f(3)+\int_{3}^{12} f^{\prime}(x) d x=35+(-4)=31$.

The Fundamental Theorems of Calculus

Page 2 of 12

Sample Problems

Multiple Choice - No Calculator

1. $\frac{d}{d x} \int_{2}^{x} \ln t d t=$
(A) $\ln x$
(B) $\ln 2$
(C) $\frac{1}{x}$
(D) $\frac{1}{2}$
(E) $\ln x-\ln 2$
2. If $g(x)=\int_{\pi}^{\pi x} \cos \left(t^{2}\right) d t$, then $g^{\prime}(x)=$
(A) $\sin \left(\pi^{2} x^{2}\right)$
(B) $\pi x \sin \left(\pi^{2} x^{2}\right)$
(C) $\pi x \cos \left(\pi^{2} x^{2}\right)$
(D) $\cos \left(\pi^{2} x^{2}\right)$
(E) $\pi \cos \left(\pi^{2} x^{2}\right)$
3. $\frac{d}{d x} \int_{\sin x}^{4} \sqrt{1+t^{2}} d t=$
(A) $\sqrt{1+\sin ^{2} x}$
(B) $-\cos x \sqrt{1+\sin ^{2} x}$
(C) $-\sqrt{1+\sin ^{2} x}$
(D) $\cos x \sqrt{1+\sin ^{2} x}$
(E) $\sqrt{1+\cos ^{2} x}$
4. If f has two continuous derivatives on $[5,10]$, then $\int_{5}^{10} f "(t) d t=$
(A) $f^{\prime \prime \prime}(10)-f^{\prime \prime \prime}(5)$
(B) $f(10)-f(5)$
(C) $f^{\prime}(10)-f^{\prime}(5)$
(D) $f^{\prime \prime}(10)-f^{\prime \prime}(5)$
(E) $f^{\prime \prime}(5)-f^{\prime \prime}(10)$

The Fundamental Theorems of Calculus

Page 3 of 12
5. The graph of f is given, and g is an antiderivative of f. If $g(3)=6$, find $g(0)$.

(A) 1
(B) 2
(C) 4
(D) 5
(E) 10
6. The graph of f is given. $F(x)=\int_{0}^{x} f(t) d t$

Which of the following statements is true?
(A) F decreases on $(1,2)$.
(B) F has a relative minimum at $x=2$
(C) F decreases on $(2,4)$
(D) F has a relative maximum at $x=1$.
(E) F has a point of inflection at $x=4$.

The Fundamental Theorems of Calculus

Page 4 of 12
7. $\frac{d}{d x} \int_{x}^{x^{2}} \tan (t) d t=$
(A) $\tan \left(x^{2}\right)-\tan x$
(B) $\tan x-\tan \left(x^{2}\right)$
(C) $\tan x-2 x \tan \left(x^{2}\right)$
(D) $2 x \tan \left(x^{2}\right)-\tan x$
(E) $\sec ^{2}\left(x^{2}\right)-\sec ^{2} x$
8. $\int_{1}^{e}\left(x-\frac{5}{x}\right) d x=$
(A) $\frac{1}{2} e^{2}-\frac{11}{2}$
(B) $\frac{1}{2} e^{2}-\frac{9}{2}$
(C) $e^{2}-\frac{11}{2}$
(D) $\frac{1}{2} e^{2}-\frac{3}{2}$
(E) $\frac{11}{2}-\frac{1}{2} e^{2}$

The Fundamental Theorems of Calculus
Page 5 of 12

Free Response 1 - No Calculator

The graph of f is given. It consists of two line segments and a semi-circle.
$g(x)=\int_{1}^{x} f(t) d t$
(a) Find $g(0), g(1)$, and $g(5)$.
(b) Find $g^{\prime}(2), g^{\prime \prime}(2)$, and $g^{\prime \prime \prime}(4)$ or state that it does not exist.
(c) For what value(s) of x does the graph of g have a point of inflection? Justify your answer.
(d) Find the absolute maximum and absolute minimum values of g on [0,5]. Justify your answer.

The Fundamental Theorems of Calculus

Page 9 of 12
Key
No Calculator

1. A
2. E
3. B
4. C
5. B
6. C
7. D
8. A

Calculator Allowed

1. D
2. C
3. D
4. B
5. D
6. D
7. E
8. A

The Fundamental Theorems of Calculus

Free Response 1 - No Calculator

The graph of f is given. It consists of two line segments and a semi-circle.

$$
g(x)=\int_{1}^{x} f(t) d t
$$

(a) Find $g(0), g(1)$, and $g(5)$.
(b) Find $g^{\prime}(2), g^{\prime \prime}(2)$, and $g^{\prime \prime \prime}(4)$ or state that it does not exist.
(c) For what value(s) of x does the graph of g have a point of inflection? Justify your answer.
(d) Find the absolute maximum and absolute minimum values of g on $[0,5]$. Justify your answer.
(a) $g(0)=\int_{1}^{0} f(t) d t=2$
$g(1)=\int_{1}^{1} f(t) d t=0$
$g(5)=\int_{1}^{5} f(t) d t=\frac{1}{2} \pi-3$
(b) $\quad g^{\prime}(2)=f(2)=-2$
$g^{\prime \prime}(2)=f^{\prime}(2)=\mathrm{DNE}$
$g^{\prime \prime}(4)=f^{\prime}(4)=0$
(c) g has a point of inflection at $x=4$ because $g^{\prime}=f$ changes from increasing to decreasing.
(d) Candidates are $x=0,3,5$, the endpoints of the interval and the critical number.

x	$g(x)$
0	2
3	-3
5	$\frac{1}{2} \pi-3$

The absolute minimum value is -3 . The absolute maximum value is 2 .

2 pts: 1 pt $g(0)$
1 pt $g(1)$ and $g(5)$

2 pts: 1 pt $g^{\prime \prime}(2)$
$1 \mathrm{pt} g^{\prime}(2)$ and $g^{\prime \prime}(4)$
2 pts: 1 pt $x=4$
1 pt justification

3 pts: 1 pt for candidates
1 pt evaluating candidates
1 pt for answers

