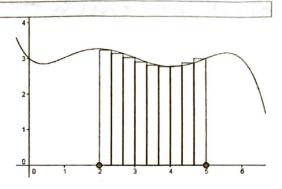
Riemann Sum

Use table for #'s 1-2. Find the following Riemann sum for the given n based on the given table of values: Left, Right, Midpoint, and Trapezoidal.


Х	0	2	4	6	8	10	12	14	16
f(x)	3	5	9	14	15	19	25	28	30

- 1. n =2
- 2. n = 4
- 3. Looking at the values given, does R_i under or over approximate compared the actual area under the curve?
- 4. Given $f(x) = x^2$, Find all 4 Riemann sums with n=6 in the interval from [1,4].

5.

Use the graph to answer 1-3.

- 1. Is the rectangular approximation shown to the right a left endpoint, right endpoint, or midpoint approximation?
- 2. Is the approximation less than or greater than the true value?
- 3. What is the width of each rectangle?

6.

Use the information provided to answer the following.

11. Let y(t) represent the rate of change of the population of a town over a 20-year period, where y is a differentiable function of t. The table shows the population change in people per year recorded at selected times.

Time (years)	0	4	10	13	20
y(t) (people per year)	2500	2724	3108	3697	4283

- a. Use the data from the table and a right Riemann Sum with four subintervals to approximate the area under the curve.
- b. What does your answer from part (a) represent?
- c. Assuming that y(t) is a continuous increasing function, is your approximation from part (a) greater or less than the true value?