Worksheet 2.1A, Quadratic functions
 MATH 1410,
 (SOLUTIONS)

1. Find the quadratic function with the given vertex and point. Put your answer in vertex form, except for g).
(a) Vertex $(0,0)$ passing through $(-2,8)$.
(b) Vertex $(2,0)$ passing through $(1,3)$.
(c) Vertex $(-3,0)$ passing through $(-5,-4)$.
(d) Vertex $(0,1)$ passing through $(-1,0)$.
(e) Vertex $(2,5)$ passing through $(3,7)$.
(f) Vertex $(-3,4)$ with y-intercept of 0 .
(g) has x -intercepts of -8 and -2 that goes through the point ($3,-9$).

Solutions.

(a) A parabola with vertex $(0,0)$ passing through $(-2,8)$ has equation $y=2 x^{2}$.
(b) A parabola with vertex $(2,0)$ passing through $(1,3)$ has equation $y=3(x-2)^{2}$.
(c) A parabola with vertex $(-3,0)$ passing through $(-5,-4)$ has equation $y=-(x+3)^{2}$.
(d) A parabola with vertex $(0,1)$ passing through $(-1,0)$ has equation $y=-x^{2}+1$.
(e) A parabola with vertex $(2,5)$ passing through $(3,7)$ has equation $y=2(x-2)^{2}+5$.
(f) A parabola with vertex $(-3,4)$ passing through $(0,0)$ has equation $y=-\frac{4}{9}(x+3)^{2}+4$.

4 Find the equation for the parabolas below. Put your answers in standard

(a)

(b)

(c)

(d)

Solutions.

(a) Since the parabola has x-intercept at $x=-1$, with multiplicity 2 , then it must be of the form $y=a(x+1)^{2}$. Since it goes through $(0,-3)$ the equation is $y=-3(x+1)^{2}$.
(b) The zeroes seem to be about 2.7 and -0.7 with vertex at $(1,-3)$. The standard form for this parabola must be something like $f(x)=a(x-1)^{2}-3$. In this case, $a=1$ works perfectly well so the equation is $y=(x-1)^{2}-3$.
(c) The vertex is at $(-1,2)$ so the quadratic has form $f(x)=a(x+1)^{2}+2$. Since the parabola goes through $(0,-1), a$ must be -3 . So the equation is $y=-3(x+1)^{2}+2$.
(d) The vertex is at $(0,0)$ so the quadratic has form $f(x)=a x^{2}$. It appears that a is about -3 since the parabola probably goes through $(1,-3)$. So the equation is $y=-3 x^{2}$.

